課題目標・目的及び研究成果

在1721月1223日月夕 (万1772日	
「「「「「」」 「「」」 「「」」 「」」 「」」 「」」 「」」 「」」 「	
1 電解還元法	を適用した酸化物燃料の乾式再処理に関する技術開発
	(財団法人電力中央研究所)
研究期間及び予算額:	平成18年度~平成20年度(3年計画) 394,151千円
平成18年度	147.531 千円
平成19年度	137 673 千円
平成10千度	109,047 千田
平成20年度	100, 947 []
开始 眼秋 6 中长 老	
研究開発の美施者:	
機関名:電刀甲央研	先所 代表者氏名:圾村義冶
機関名:日本原子力で	研究開発機構 代表者氏名:湊 和生
機関名:京都大学	代表者氏名:藤井俊行
項目	内容
 1.目的・目標 	金属電解法乾式再処理技術を軽水炉使用済燃料に適用して核燃料を
	金属で回収し、次世代炉として高い性能をもつ金属燃料高速炉に供給す
	るために、研究開発が推進されている。本事業では、この技術の実用化
	に向けて 雷解還元におけろ実用的か雷極の開発と元素挙動の解明を行
	い、さらに、前処理から雪解畳売を怒て雪解特制に至る再処理プロセス
	く、こうに、前足生から電産途にと社て電産情報に上る行足生/FC/
	谷研充開発項日は以下の通りである。
	(1) MA (マイナーアクチード) お上び Pu 送動の把握
	MACTU酸化物が金属、速化される回性での学動を化性して同凹収 素を法律よれたは、中間生産の溶解症を測定よれ
	Am (代表的な MA) を用いる試験に必要な機械装置を製作し、そ
	れらを用いた試験手順を確立する。
	②Am 挙動の把握
	Am 酸化物の溶融塩中の溶解度を、酸化数や酸化物イオン濃度な
	どを変化させて測定し、系内で支配的な溶解化学種、平衡固相及び
	溶出機構に関する基礎データを取得して、溶融塩中の Am 挙動を明
	らかにする。
	③Pu 挙動の把握
	Pu 酸化物について ②と同様の基礎データを取得して 溶融塩
	中の Pu 送動を明らかにする
	(9) FD の米動な上び影響の加堤
	(2) Π の手動わよい影響の心理 酸化物の温二日内が定めれた進行するなたけ、酸化物ズナン(0^2)
	酸化物の曝光反応が速やかに進行するためには、酸化物イオン(0)
	か俗配塩中に俗りやすい余件が重要であり、0 の俗解度が大さい
	LIUI は、浴舗温浴として適している。ところが、使用済燃料を処理
	するとCs, Sr 等のFP が LiCl 中に溶解・蓄積するため、溶融塩組成が
	変化していく。また、希土類酸化物は、UO ₂ や PuO ₂ よりも金属に還元
	されづらく、金属に還元されるか否かは、電解条件の微妙な差異に依
	存することが熱力学的に予想されている。
	①アルカリ、アルカリ土類金属元素の影響測定

溶融 LiCl 中に蓄積したアルカリ金属やアルカリ土類金属が UO。
の還元反応に及ぼす影響を、Li,0の溶解度とU0,の還元速度を測定
することによって評価する。
②希土類元素の還元挙動測定
溶融 LiCl 中の 0 ² 濃度をパラメータとして、希土類元素の挙動を
電気化学測定により検討し、さらに希土類酸化物を陰極とした電解
を行って、金属への還元の可能性を調べる。
③希土類元素およびウランの溶解挙動に関する研究
希土類元素およびウランを LiCl 等の溶融塩中に溶解して吸光ス
ペクトルを測定・解析することにより、それら元素の溶解挙動を明
らかにする。
(3) UO ₂ 先行回収の可能性検討
再処理プロセスの合理化を目的に、電解還元に先立って使用済燃料
から UO ₂ を高純度で回収し、Pu 富化度を高めることを検討する。具体
的には、溶融塩中で酸化物を陽極にして電解を行い、UO ₂ を選択的に
陽極から陰極に移送する方法について、電流効率と生成物形態、FP
分離性能を調べることによって、本プロセスの実用性に関する評価を
行う。
(4) 実用的陽極の開発
化学的耐食性/機械的健全性に優れた実用的な陽極材料を選定す
るため、新たな材料を対象とした試験を行う。
①新材料の陽極反応機構解析
導電性酸化物や合金など新たな材料の陽極挙動を解析するため、
電気化学測定により分極特性を取得して、酸素発生反応の電流密度
や反応機構について検討する。
②電解還元における陽極性能評価
①で試験した材料を陽極に配して電解試験を行い、化学的/機械
的耐久性に関するデータを取得して、電解還元プロセスにおける性
能を明らかにする。そして、従来の各種陽極材料と比較検討し、電
解還元に適した材料を選定する。
(5)再処理プロセス連続試験(前処理/電解還元/電解精製)
前処理(脱被覆による酸化物燃料回収)⇒ 電解還元(酸化物を金
属に還元) ⇒ 電解精製 (FP 分離と Pu 富化度調整) の一連の乾式再
処理プロセスを、約100g/バッチのUO2燃料を用いて連続的に試験す
る。そして、試験を通しての各元素の物質収支を明らかにし、全体プ
ロセスの工学的な成立性を評価する。
試験装置を製作して、前処理/電解還元/電解精製の各プロセス
について予備試験を行い、適切な試験条件を把握する。
処理/電解遠元/電解精製の一連の再処理ノロセスを、UO ₂ を
用いて連続的に武鞅する。
③俣擬使用消燃料を用いて、風」、日洋の海娃計験た行る
長疑使用角燃料を用いて、②と回様の単統試験を打り。 (6) 実用描に向けた濃元試験
(1) 大尻保に凹りに逐ル砂礫 滑売技術の実田州なデオため 淮宝坦措の10 滑売封除な史佐ナス
逐九1X1100天用111を小りにの、平夫祝保の002速九武線を失肥りる。 さにに 主は
これまでの成果を反映させて雷解冬件(雪極の構造と配置 1:0

	 濃度、電位と電流密度など)を設定し、0.5~1 kg 程度の UO₂を用いた還元試験を実施してスケールアップ効果を調べる。 ②実規模電解槽の概念検討 実規模電解槽(~10 kg/バッチ)の概念を検討する。 (7)まとめ、評価/プロセスの最適化検討 研究開発結果に基づき、電解還元法を適用した再処理のプロセスフローを最適化して各元素の物質収支を提示する。さらに、発生する廃 棄物の種類や処理法などを検討する。
 2.研究成果 ・成果 ・副次的な成果 ・論文、特許等 	【研究開発項目1】MA(マイナーアクチニド)およびPu 挙動の把握 ①試験装置の整備と予備試験 Am 試験用のグローブボックス内に溶解度測定用電気炉と自動滴定 装置を設置し、予備試験を行って塩試料の採取とLi ₂ 0 およびAm 濃度 の分析操作法を確立した。Li ₂ 0 濃度は中和滴定、Am 濃度は y 線スペ クトルにより、それぞれ分析した。
	 ②Am 挙動の把握 650℃の溶融 LiC1-Li₂0 中で、Am₂0₃および AmO₂の溶解度を、③の Pu 試験と同様の方法により測定した。Am₂0₃ 試料は、原子力機構所有の ²⁴¹AmO₂ 試料を N₂-4%H₂気流中、1000℃において 5 hr 加熱還元して調製 した。測定された Am₂0₃の溶解度は、Pu₂0₃の溶解度の数倍であった。 一方、AmO₂の溶解度は、PuO₂の溶解度と同程度であった。
	③Pu 挙動の把握 Pu ₂ 0 ₃ および Pu0 ₂ の溶解度を測定した。タングステンるつぼにLiCl を入れて 650℃で溶融し、約 0.3 g の Pu0 ₂ 粉末を加えた。Pu ₂ 0 ₃ の測 定では、Li 金属を加えて Pu0 ₂ を Pu ₂ 0 ₃ に還元した。続いて、Li ₂ 0 を段 階的に添加しながら Pu 濃度 (溶解度) を測定した。Pu ₂ 0 ₃ の溶解度は、 Li ₂ 0濃度に比例して増加し、5 wt%-Li ₂ 0において7.9×10 ⁻⁶ mol/g-salt であった。既報の希土類元素の溶解度と比較すると、Ce ₂ 0 ₃ に近く、 Nd ₂ 0 ₃ の約 3 倍であった。一方、Pu0 ₂ の溶解度は 2.4×10 ⁻⁶ mol/g-salt であり、Pu ₂ 0 ₃ に比べて小さい値であった。測定後の沈殿物を X 線回 折法で分析したところ、Pu ₂ 0 ₃ は Li ₂ 0 と複合酸化物を生成した可能性 が示された。Pu0 ₂ の化学形態は、Li ₂ 0 添加後も変化していなかった。 以上、電解還元プロセスの貴重な基礎データとして、AmとPuの酸化 物の溶解度を測定した。測定値から計算される溶解量は小さい。例え ば、主要な酸化物であるPu0 ₂ では、100 ℓ (約150 kg)のLiCl-1wt%Li ₂ 0 中にPuは高々15 g溶解するに過ぎない。しかも使用済燃料のような多 元素系では、同様な溶解挙動を示すPu、Am、希土類元素は、他元素が 塩中に溶解することで、各元素の溶解度が低下する効果も期待でき る。また、AmやPuの酸化物を金属に還元してしまえば、金属に還元さ れない希土類酸化物のみが溶解することも示唆された。
	【研究開発項目2】FPの挙動および影響の把握 ①アルカリ、アルカリ土類金属元素の影響測定 ・溶融 LiC1 中の Li ₂ 0 溶解度の測定 LiC1 に過剰な Li ₂ 0 を加えて 650℃で溶融し、アルカリ金属あ るいはアルカリ土類金属の塩化物を段階的に加えながら、Li ₂ 0 濃度(溶解度)を測定した。その結果、アルカリ金属の NaC1、

KC1、CsC1 を加えると Li ₂ 0 溶解度は大きく低下し、その影響は
Cs > K > Na の順に大きいことがわかった。アルカリ土類金属の
場合には、Li ₂ 0 溶解度は BaCl ₂ を添加すると緩やかに低下し、
SrCl ₂ では逆に増加した。CaCl ₂ や MgCl ₂ では、CaO や MgO が沈殿
することがわかった。このように、Li ₂ 0 溶解度に及ぼす影響は、
元素毎に大きく異なることを明らかにした。さらに、FP 組成を
模擬した混合塩試験により、Li ₋ 0 溶解度を支配するのは Cs で、
SrやBaの影響はほぼ無視できることが示された。
 I/0.の雷解環元試験
with LiCl に KCl あろいけ CsCl SrCl。を添加した塩浴中で
10.の電解還元試験を行い 塩組成が 10.の還元速度に及ぼす影
響を完善的に証価した IIO 雪極には半田板状のIIO 片 (直径 7 mm
Y 国 な 1 3-1 I mm) 限 版 に け 白 公 振 一 教 昭 雲 極 に け L i - Bi 今 会
∧序で1.5 1.4 mm/、 囫囵には口並似、 ジボ电極には L1 D1 日並 たみわ ごわ田いた 泪 由け 650℃ で 02 値 しして小具の 1:0 た
そて4して4し用いた。 価度は 050 して、0 你として少重の $L1_20$ を 加らた
L101-K01 糸では、K01 組成を 0~41 mo1%で変化させた。 竜麻 吐 10 の第二重法は 101 組合の増上にったて低工した。 電解
後の試料断面から、UO ₂ 斤の遠元は外側からはは均等に進行し、
KCI組成の増大とともに還元速度が著しく低下することが示され
た。そして、還元層の厚さと電解時間との関係を整埋することに
より、還元速度を定量的に評価することができた。LiCl-CsCl 糸
では、CsCl 組成の増大につれて UO2の還元速度が著しく低下し、
その影響は KCl よりも若干大きいことが示された。一方、
LiCl-SrCl ₂ 系では、SrCl ₂ 組成 0~20mo1%の範囲で、UO ₂ の還元速
度は同等であった。
以上、UO2の還元速度は、Li20 溶解度に強い影響を受けることが明
らかとなった。これは、還元速度が酸化物試料内に浸透した溶融塩を
介する 0 ²⁻ の拡散に律速されていることを示唆している。 つまり、Li ₂ 0
溶解度が大きい場合、Li ₂ 0 が飽和している還元/未還元界面と、試料
表面のバルク塩中との間で 0 ²⁻ の濃度差が大きくなり、拡散による 0 ²⁻
の排出が促進されると考えられる。LiCl から CsCl を取り除くことは
困難であるため、電解還元プロセスに先立って Cs を除去することの
重要性が示唆された(Cs は揮発し易いため、高温処理による除去が
可能)。
②希土類元素の還元挙動測定
溶融 LiCl 中で希土類酸化物が金属に還元される条件を明らかにす
るため、Li ₂ 0 濃度をパラメータとして、希土類金属(La, Ce, Pr, Nd,
Gd, Y)の電位を測定した。その結果、La 金属上には、Li ₂ 0 濃度(mo1%)
<i>x_{Li20} ≧0.20 でLi</i> 金属が析出し、同条件下ではLa ₂ 0 ₃ は金属へ還元さ
れないことがわかった。同様に、Ce, Pr, Nd 金属上では x _{Li20} が各々
≧0.39, ≧0.67, ≧0.77 にて Li 金属が析出した。Gd と Y は金属表
面が不動態化しやすいため、同様の測定は困難であった。さらに、サ
イクリックボルタンメトリーにより希土類元素の電極反応を調べ、軽
希土と呼ばれる La, Ce, Pr, Nd と重希土に分類される Gd, Y とでは、
性質が大きく異なることがわかった。
溶融 LiCl 中に LaCl。を溶解した系に Li ₀ 0 を添加したところ。Li ₀ 0
濃度に応じて、La0Cl あるいはLa.0.が沈殿した。また、La0と推定
されるイオン種が塩中に溶け出し、その溶解度は5 wt%-Li ₀ 0 では 1.3

×10 ⁻⁵ mol/g-salt であった。これは研究項目1で測定した Pu ₂ 0 ₃ の溶
解度よりも約1.6倍大きい。これらの結果から、650℃でのLaのE-p0 ²⁻
図を作成した。図より、LaOC1 が安定な領域が広いこと、塩中の Li ₂ 0
濃度が低ければLa ₂ O ₃ を金属にまで還元できることが示唆された。
La ₂ 0 ₃ および Nd ₂ 0 ₃ ペレットを陰極として電解した結果、溶融 LiC1
中に Li ₂ 0 を添加しない条件においても、金属には還元されなかった。
これは、熱力学的には可能であっても、反応が 02-の輸送に律速され
て、実際には還元が進行しないものと考えられる。熱力学的考察に反
して、希土類酸化物の還元は現実には難しい。しかし使用済燃料中で
は、希土類元素と安定な合金を生成する白金族元素 FP が共存するた
め、合金化により還元が助長される可能性が考えられ、実際に研究項
目5の模擬使用済燃料を用いた電解還元試験で、一部の希土類元素が
Pdとの合金相から検出された。
③希十類元素およびウランの溶解挙動に関する研究
 ・希十類元素(ネオジム)およびウランの吸光スペクトル測定および
分析評価
溶融LiCl 中に NdCl。を溶解し、吸光スペクトルを測定した。589
nm にハイパーセンシティブ遷移として知られている非常に吸光度
の高い遷移が観測され、モル吸光係数は 17.7 [M^{-1} cm ⁻¹]であった。
この系にCsClを添加したところ、スペクトルのピークが分裂した
ことから、NdCl ³⁻ 錯体の対称性が増していることが示唆された。ま
た 振動子強度の変化から CsCl の添加は溶融 LiCl の化学的性質
を変化させ 溶存錯体の安定性を変化させる可能性があることがわ
かった
$^{\prime\prime}$ ンに。
北常に大きな吸収帯(5ℓ -5f6d 遷移) 1152 nm に特徴的たピーク
$(5f^2,5f^2$ 遷移 モル吸光係数け 19.6 $[M^{-1} \text{ cm}^{-1}]$) が観測された
の系に $SrC1$ を添加すると 紫外領域の吸光度が増加した 溶融塩
の比較対象として 溶融 CsCl 中の II (IV) の吸光スペクトルの測定・
子場に上ってエネルギー淮位の副淮位への分型が起こっているこ
う物にようて一本にの前半位、の分表が起こうていることが 組測された
・吸来スペクトル測定と電気化学測定による酸化物イオン(0^{2})の影響
町
谷間 LIOI 中に MOI ₃ と俗解 した $\pi \in Li_2$ を 認知 しなが 5 双九 ハ ペクトルを測定した 580 nm のハイパーセンシティブ連移のピー
γ 「 ν 2 例 ν C ν 2 の ν C ν 2) 7) を 7 の ν 2 2) 7) を 7 の ν 2 2) 7) を 7 の ν 2 2) 7) 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
クは、0 称加重に比例して效儿及加減少し、Nu001を主成すること が確認された
が確応C40/C。
谷間 LIUI 中に 001_4 2 谷胜 したボビ LI $_20$ 2 你加 したこころ、 倣 し ノ 反 亡 し て 堤 岳 の 沙避 が 仕 武 し た ここ で $U(\mathbf{N})$ の 哂 半 ピー ク け
、 χ μ
旧人したか、 $0(\mathbf{m})$ の吸加ビークは観景された。 9イクタククホル タンストリーでは $U(\mathbf{m})$ の漫一ピーカけ私じ組家されず
クレクトリー $(u, 0)(\mathbf{I})/0(\mathbf{II})$ の速几ビークは 70 と概念さ 409 、 吸来するカトルの測定結果と一致した $\mathbf{II}(\mathbf{II})$ け 0^{2} と振めて反応
吸ルベックドルの側に桁木と 致した。 $U(V) は U こ 極めて反応し めナノ UO な 仕 は ナス レ 推測 さわた ささ に Li O な 活加 した レニス$
γ_{1} γ_{2} $\gamma_$
● いⅢ/ · · · · · · · · · · · · · · · · · · ·
C4 U/c_0 大研究にたい、て可か的に NJ(\mathbf{m}) い(\mathbf{n}) の吸业ピークしてい
←4町九にわいて町八的に、Na(Ⅲ)とU(Ⅳ)の敗五ビークとモル吸 火兵粉た広い油目留居づ油点」た。涼頭にの中に低の二まい出た
「「「「「「」」」」「「」」」「「」」「「」」「「」」「「」」「「」」「「」

し、その元素がある波長領域に吸光ピークを有したとしても、干渉
しない他の波長領域のビークを利用してNd(III)およびU(IV)濃度を
次定できる。今後、様々な元素のモル吸光係数を広い波長域で測定 していることにといってたく、どのアニホルた地体にかいて、ただ
していくことにより、アクナニド・印元素共存状態において、有効
に目的元素の濃度を決定することか可能となる。
【研究関発頂日3】110 生行回収の可能桝検封
【初九開光頃日3】002元11回収の可能住便可 唱極に装荷する白金族元素(IIO との分離が最も困難た FP であるパラ
じた人(Pd)を伸用) と IIO の比をパラメータとする IIO 回収雪解試験を
行い 陰極における雷流効率と回収物中に移行する自全族元素量を調べ
」。 110。とPdを混合した模擬使用溶燃料を陽極。 グラッシーカーボンを陰極
として、500℃の溶融LiCl-KCl-U0 ₆ Cl。(U濃度: 7~8 wt%)中で電気化学
測定および電解を行った。陽極に装荷したUO。は約20 gで、Pdの含有量
を0.4~4.6 wt%と変化させた。まず分極曲線を測定し、塩素ガス発生を
抑制しつつU0。を陽極から陰極に輸送できる電位条件を把握した。そし
て、電流密度をパラメータとして電解を行った結果、陰極上では100%
に近い電流効率でU02を回収することができた。陰極で回収されたU02中
のPd含有量は約0.1 wt%で、陽極のPd含有量に対する明確な依存性は見
られなかった。一方、溶融塩中のPd濃度は、陽極のPd含有量に依存した。
Pd濃度の経時変化から、Pdは電解によってだけでなく、UO ₂ C1 ₂ との化学
反応により溶解したことが推測された。溶融塩中のPd濃度0.012~0.13
wt%において、回収UO2中のPd含有量は0.1 wt%程度であったことから、
UO ₂ 先行回収プロセスではPdについて0.1 wt%程度の混入は許容する必要
があると考えられる。
があると考えられる。
があると考えられる。 【研究開発項目4】実用的陽極の開発
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て 450℃の Licl-KCl-Li 0 中で分類測定を行い、電振の安定性を
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiC1-KC1-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した、フェライト以外の材料については、電液が安定せず、約
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50 分間の分極後にけいずれの電極材料も激しく消耗していた
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる、フェライト
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約015 A/cm ² の安定した拡散限界
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約 0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0 について、Li ₂ 0を
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約 0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0について、Li ₂ 0を 添加したLiCl-KCl(450℃)およびLiCl(700℃)、CaCl ₂ (850℃)中で
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiC1-KC1-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約 0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSiO、TiSiOについて、Li ₂ 0を 添加したLiC1-KC1(450℃)およびLiC1(700℃)、CaCl ₂ (850℃)中で 分極特性を調べた。SiOとTiSiOを陽極に用いた場合、酸素発生電
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0について、Li ₂ 0を 添加したLiCl-KCl(450℃)およびLiCl(700℃)、CaCl ₂ (850℃)中で 分極特性を調べた。Si0とTiSi0を陽極に用いた場合、酸素発生電 流が観測された。Si0では、表面にSi0 ² が生成して、電気化学反応
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0について、Li ₂ 0を 添加したLiCl-KCl(450℃)およびLiCl(700℃)、CaCl ₂ (850℃)中で 分極特性を調べた。Si0とTiSi0を陽極に用いた場合、酸素発生電 流が観測された。Si0では、表面にSi0 ₂ が生成して、電気化学反応 サイトであったSi0の露出が減少し、電流密度が小さくなることが
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiC1-KC1-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約 0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0 について、Li ₂ 0を 添加したLiC1-KC1(450℃)およびLiC1(700℃)、CaCl ₂ (850℃)中で 分極特性を調べた。Si0 と TiSi0 を陽極に用いた場合、酸素発生電 流が観測された。Si0 では、表面にSi0 ₂ が生成して、電気化学反応 サイトであったSi0 の露出が減少し、電流密度が小さくなることが 分かった。TiSi0 では、酸素発生の電流効率が 60%程度と低く、電
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiC1-KC1-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0 について、Li ₂ 0を 添加したLiC1-KC1(450℃)およびLiC1(700℃)、CaCl ₂ (850℃)中で 分極特性を調べた。Si0 と TiSi0を陽極に用いた場合、酸素発生電 流が観測された。Si0 では、表面にSi0 ₂ が生成して、電気化学反応 サイトであったSi0 の露出が減少し、電流密度が小さくなることが 分かった。TiSi0では、酸素発生の電流効率が 60%程度と低く、電 極の消耗が推定された。高濃度リンドープシリコンは、電解中に不
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび白金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li ₂ 0中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0°に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0について、Li ₂ 0を 添加したLiCl-KCl(450℃)およびLiCl(700℃)、CaCl ₂ (850℃)中で 分極特性を調べた。Si0とTiSi0を陽極に用いた場合、酸素発生電 流が観測された。Si0では、表面にSi0 ₂ が生成して、電気化学反応 サイトであったSi0の露出が減少し、電流密度が小さくなることが 分かった。TiSi0では、酸素発生の電流効率が60%程度と低く、電 極の消耗が推定された。高濃度リンドープシリコンは、電解中に不 動態化した。
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび自金族系酸化物、フェライト系酸化物につい て、450℃のLiCI-KCI-Li20中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0 について、Li20を 添加したLiCI-KCI(450℃)およびLiCI(700℃)、CaCl2(850℃)中で 分極特性を調べた。Si0では、表面にSi02が生成して、電気化学反応 サイトであったSi0の露出が減少し、電流密度が小さくなることが 分かった。TiSi0では、酸素発生の電流効率が60%程度と低く、電 極の消耗が推定された。高濃度リンドープシリコンは、電解中に不 動態化した。 次に、ホウ素ドープダイヤモンド被覆シリコン(BDD)を陽極に用
があると考えられる。 【研究開発項目4】実用的陽極の開発 ①新材料の陽極反応機構解析 ・金属および酸化物系材料 タングステンおよび自金族系酸化物、フェライト系酸化物につい て、450℃のLiCl-KCl-Li20中で分極測定を行い、電極の安定性を 評価した。フェライト以外の材料については、電流が安定せず、約 50分間の分極後にはいずれの電極材料も激しく消耗していた。こ れは、塩中の0 ² に起因する塩基性溶解と考えられる。フェライト については、試験時間を通じて約0.15 A/cm ² の安定した拡散限界 電流が観測され、目的とする酸素発生反応が優先的に進行すること が分かった。 ・ケイ素および炭素系材料 高濃度リンドープシリコンおよびSi0、TiSi0 について、Li20を 添加したLiCl-KCl(450℃)およびLiCl(700℃)、CaCl2(850℃)中で 分極特性を調べた。Si0 と TiSi0を陽極に用いた場合、酸素発生電 流が観測された。Si0では、表面にSi02が生成して、電気化学反応 サイトであったSi0の露出が減少し、電流密度が小さくなることが 分かった。TiSi0では、酸素発生の電流効率が60%程度と低く、電 極の消耗が推定された。高濃度リンドープシリコンは、電解中に不 動態化した。 次に、ホウ素ドープダイヤモンド被覆シリコン(BDD)を陽極に用 い、Li20を添加したLiCl-KCl(500℃)中で分極特性を調べた。その

ころ0.のみを検知した。従って、雪極の消耗を音味すろ 00 や 00。
の発生け起こっていない。この酸素発生反応の雪流効素は 100~
05%と計1回されいに。
②声切思ニューシューンの伝いとなって
①で選択したフェフィトおよび SiO、BDD を陽極に用いて電解試験
を行った結果、フェライトが最も有望であった。
・フェライト陽極
650℃の溶融 LiCl-Li ₂ 0 中で、 フェライトを陽極に用いて 70 時間
の電解を行い、電極の重量変化を測定した。その結果、電解開始当
初は塩基性溶解により重量がわずかに減少するが、電解が進行する
につれて、表面に高次酸化物が形成されることによる重量増加と相
殺され、 重量減少が抑えられた。 また、 フェライトは、長時間恒中
に注しただけでけ重畳け減小 北ボー 執衝戦に強いことが示された
以上、ノエノイトは、电风化子区心寺により石干勝良りるが、然間
撃寺の物理的要因での务化は無く、650しの浴離L101甲で女走な酸
奈允生電極として美用でさる可能性を明らかにした。
・Si0 陽極
850℃の溶融 CaCl ₂ –Li ₂ 0 中で、Si0 を陽極に用いて電解を行った。
その結果、電流密度は小さいものの、40 時間程度の耐久性がある
ことが示せた。即ち Si0 は、850℃の CaCl ₂ 中で電流密度管理に留
意すれば使用可能である。
・BDD 陽極
500℃の溶融LiCl-KCl-Li₀0中で、BDDを陽極に用いて70時間の電
解を行い、電極の重量変化を測定した。その結果、重量はわずかに
減少したものの、減少量と電解時間との関係に系統的な変化が見ら
れたいことから BDDは電気化学反応により消耗するのでけたく
執衝撃空の物理的更因でダイヤモンド相が剥離することにより、 重
黒が減小することが明らかとなった DLL RDD雪極け500℃の溶融
重小(成) りることがりりかとなった。以上、DDD电極は000 Cの存置 Lici_KC1山で酸麦及仕雪振しして振みて直い耐な州を右オスこと
LICI KCI中て販売先生电極として極めて同い 胴八住を有りること た明とみなした。しみしみぶと、FOOのた切らて泪座なかいでは穴
を明らがにした。しかしながら、300しを超える価度にわいては女
走に作動せず、 $LaCl_2$ (850 C) ~L1Cl (700 C) 中でも同様の耐久
性試験を実施したが、いずれの俗においても良好な耐久性を示さな
かった。
【研究開発項目5】再処理プロセス連続試験
①試験装置の製作と予備試験
・前処理
UO₂ペレットと模擬 FP 添加 UO₂ペレットを出発物質とし、まず空
気中・1000℃で U ₃ 0 ₈ に酸化して粉体化した(酸化熱処理脱被覆法を
想定)。次に、H。気流中・600℃でU0。粉末に再還元した後、加圧成
型して N _e -13%L。気流中・1700℃で焼結することにより UO。焼結体を
得た。また、U ₀ 0。粉末をそのまま加圧成型し、N ₂ -1.3%H ₂ 気流中・1700℃
で焼結することにより110、焼結体を製造できることも示した。これ
ら 2 通りの 手順で 作製 した IIO. 性結 休け 名 4 哲性 で あ り 雪 解 畳 一
に演していることが公かった。 増換 ED 二まの山づけ、電研選出に
に辿していることがガルウに。 保険 FF 九糸の中ては、 电件曝兀に 亜影郷も五ば子 Co ト To た首泪加田の温和べ程改陸ナベモモ
芯彩管を及は9 US と 1e を向価処理の週程で揮発际去でさた。
以上、酸化物燃料の間易へレット化万法を催立することができ
た。この簡易ペレット化により、後工程では微粉末の取扱が回避さ

L

れるため、ハンドリング面での利点は極めて大きい。
・電解還元 電解還元試験装置を製作し、様々な形状の陰極に約100gのU02 を装荷して、650℃の溶融LiC1-Li20中で還元試験を行った。使用 したU02は、粒径 <0.25 mmの粉末である。厚さ15 mmの箱型陰極 を用いた試験では、約12時間で金属への還元が完了した。厚さ20 mmの箱型陰極を用いた試験では、約17時間かけても少量のU02が 中心部に残留した。皿型陰極にU02を厚さ約10 mmで装荷した試験 では、約8時間で還元が完了した。このように、短時間で効率的に 還元するためには、陰極には、酸化物粉末層が厚くならない形状が 要求されることが明らかとなった。
電解精製槽へ還元生成物に付随する酸素が持ち込まれた場合を 模擬して、500 [°] Cの溶融LiCl-KCl-UCl ₃ 中に、LiCl-Li ₂ 0およびNd ₂ 0 ₃ を添加した。その結果、UCl ₃ が酸化物と反応し、ウランはUO ₂ やUO の微粉末として沈殿することがわかった。その時、ネオジムは溶融 塩中にNdCl ₃ として溶解した。
②110 を用いた連続試験
•前机理
①の予備試験と同様の手順で、110。ペレットから多孔質性の焼結
体を作製した。U0。粉末に再還元後に作製した U0。焼結体は、 67×
10 mm で気孔率 30%、U ₂ O ₂ 粉末から直接作製した UO ₂ 焼結体は、 67
×13 mm で気孔率 37%であった。
• 雷解環元
電解浴は、内径 97 mm のステンレスるつぼに入れた約 0.6 0 の
LiCl-1wt%Li ₀ 0で、温度は650℃である。電解浴内には、上記のU0。
焼結体 104 g を装荷した直径 24 mm の円筒形陰極を中央に、その周
囲に白金陽極を3つ配置した。電解は、電流を15 A から還元の進
行に伴って徐々に下げて行き、約9時間で終了した。焼結体は、電
解後も外形に変化けなかったが、全て全属に還元されており、電流
所後のパルに変化なながったが、主く並属に速光されており、電流 効率け 6% であった 9 種類の 性結休で同様の 結果が得られたこと
から 実田的な還元速度として日煙にしていた 10 時間以内に 再
現住良く 002 逐九が元」 したこ計画 しさる。 検索すべき式用 レレア 棒結体を用いたことに上り险振内におけ
40 る。こ 40 は、 医極の 形 仏に 刈り る 安水 争項 (100 00_2 初本 2 用 0
に「哺試験を参照」が軽減されたことを息味りる。なわ、焼柿伴日 身が気味明で漂二されなければなくないため、気孔変が土きいこと
另か短时间で選加されなりればならないため、X(化学が入さいこと) は必須ですで
は必須じめる。
• 电胜有段
電 所 俗 は、 内 佺 153 mm の 仏 灰 奈 婀 る つ は に 八 れ に 約 1.1 じ の
L101-K01-4wt%001。で、温度は 500 してある。電解浴内には、上記
の 尿 元 生 成 物 を 装 何 し に 防 極 ハ 人 ケ ツ ト と 医 極 の 人 ケ ン レ 入 俸 を
に下りし11さ、0~8 時間ご於」した。 電解後、 医極上では樹枝状の の A 屋 山 ニンボ 回加 された 四振 ジュケート 中には小見の A 屋 ユニ
の金属リフィル凹収された。 勝極ハスクット内には少重の金属リフ
イル次笛ししいにか(表何重に刈し、Kun-1か14%、Kun-2か3%)、 中プロセスでは第二年代版たけギロレアには近点素的に産知性制
夫ノロセムでは遠元生成物を注さ足して行けば、効率的に電解精製

を行うことができると考えられる。
以上、一連のプロセスにおいて、酸化物燃料からウラン金属を高い
物質収支で精製・回収できる見通しが得られた。
③ 構 擬 は 田 落 燃 料 を 田 い た
・前処理
①の予備試験と同様の手順で、模擬 FP 添加 UO ₂ ペレット
(Ce, Sr, Nd, Sm, Zr, Mo, Pd を各 1 wt%含む)から、多孔質性の焼結体を
作製した。焼結体の気孔率は26~33%で、電子顕微鏡分析により、
Sr, Ce, Nd, Sm, Zr は UO ₂ 中にほぼ均一に固溶し、Mo と Pd は合金を形
成して局所的に析出していることが分かった。
電解浴と電極構造は 20 の試験と同様で、陰極には模擬 FP 含有 $U0_2$
焼柿や 101 g を装何した。 竜雁は、 竜孤を 15 A から I A よで係々 に下げて行き - 7 9 時間で約了」た - 電敏後に棒法は断売も知察し
に下げて11さ、1.0时间で於了した。电胜夜に焼枯忰例面を観察した結果、ディー如を除いて110.けをて金属に畳売されていた。畳売
率は 99.2% 電流効率は 74% 還元生成物への塩付着率は 18 wt%と
評価された。FP 元素では、Sr は全量が塩中に溶出した。Mo と Pd
は金属、Zr は金属あるいは酸化物として還元生成物中に存在して
いた。希土類(Ce, Nd, Sm)の大部分は酸化物のままであり、一部が
Pd と合金化して還元され、一部が塩中に溶出した。
 ・電解精製
電解浴と電極構造は②の試験と同様で、還元生成物 84 g を陽極
バスケットに装荷した。電解は、電流を6Aから0.3Aまで徐々に エゴマ伝さーco味眼でぬてした。電知後、哈佐では掛け出のA尾
下りて打さ、6.0 時間で終于した。竜胜俊、陰極では樹忟状の金属 ウランが回収された。 隅極バスケット内のウラン産の家は 7%であ
ックンが回収 C40/C。 陽極パハク クト 100 クノン 次 目 平は 7m C の った FP 元素でけ Sr Ce Nd Sm け 塩中に Mo Pd 7r け 陽極残留
物中に存在していた。
以上、一連のプロセスにおいて、実用的な処理速度で酸化物を還元し、
精製された金属ウランを回収することに成功した。FP元素の挙動は、概
ね予想通りであった。以上より、プロセス全体の成立性を実証すること
ができた。
【研究開発項目6】実規模に向けた還元試驗
①進実規模 U0。還元試験
電解浴は、内径 124 mm のステンレスるつぼに入れた約 1.0 0(1.5
kg)の溶融 LiCl−1. 6wt%Li₂0 で、温度は 650℃である。陰極は十字型
のステンレス製容器で(70×40×15 mm のバスケット4つを十字に組
み合わせた構造で、U02粉末が落下しないように金網を2重に取り付
けてある)、 UO_2 粉末(粒径 < 0.25 mm)を各バスケットに約 157 g す
つ、台計 627 g 装何した。日金(Pt) 陽極は、3 仅の Pt 板を果ねて周 囲な MrO シン ラウビで要。たたので、発生する 酸素ガスなシン ラウビ
四で Mgo ノユノソト く復つにものく、先生りる酸素ルヘをシュノリト 上部から排気した この Pt
1つずつ、計4つ配置した。
分極測定により、陽極と陰極の電位が正常であることを確認した
後、定電流電解を19 A で開始した。最初は電解が順調に進行してい
たが、200 分経過した頃から、陽極電位が異常に卑な値を示しはじめ、
Pt 板が順次に破損した。これは、Pt が金属 Li によって腐食したため
と推定されたが、陰極では金属 Li が多量に析出しない条件を保持し

ていたため、腐食に至るメカニズムは不明である。電解終了後、陰極
バスケットを切断したところ、表面近傍は金属に還元されていた。還
元領域の体積から見積もった試料全体の還元率は46%と評価された。
本試験結果から、陰極/陽極間に適正な距離を保つこと、金属 Li の
移動防止用に隔壁を設けることなど、電解還元槽のスケールアップを
図る上で貴重な示唆が得られた。
②宝担棋雷解榑の概念検討
雪梅左右配置刑(板坐の陰梅と唱梅を水亚古向に対峙)雪梅な婚が
电極工力配直至(仮仏の医極この極てが十万円に方向、电極交換が 家月) たたび電振して配置刑(阻振の下に除振な配置 阻振で発生
谷勿ノ、わよい电極上「能固空(囫囵り」に医極と能固、囫囵(光生 ナて融ませればしたけけていくため電法効率が向し)の9番類の電
9 る 酸糸 カ ヘ 加 上 力 に 扱 り しい 、 た め 电 仇 効 半 か 向 上) の 2 惟 頬 の 电
電極左右配直型の電解槽は、0.6 m×1.1 mの万形で、溶融L101か392 kg
(264 l) 入っており、塩浴の深さは0.4 mとなる。その中に、酸化物
5 kgを装荷した平板状の陰極バスケットが2列×4の計8個配置され、
各陰極バスケットの両側には、陽極板が対峙している。陰極バスケッ
トは、先ず電解槽 I (Li ₂ 0濃度:1.0 wt%)に入れ、540 Aで5時間の
電解を行って、酸化物の90%を金属に還元する。次に、陰極バスケッ
トを電解槽Ⅱ(Li ₂ 0濃度 : 0.2 wt%)に移動し、75 Aで4時間の電解を
行って、完全に金属へ還元する。上述のように電解槽内では8個の陰
極が並行して処理され、しかも1日に4回の電解を行えば、計32個で処
理量は160 kg/日となる。年間に200日の操業日数を想定すると、電解
槽ⅠとⅡで計2基当たりの年間処理量は32トンとなる。また、電極上
下配置型の雷解槽では、雷解槽Ⅰ(直径1.2m)と雷解槽Ⅱ(直径0.8
m) において 酸化物を10 ko装荷した陰極を 4個並行して同様に如
座できる成前とした。
【研空閉発頂日7】まとめ「誕価/プロセスの是海ル検封
使用領酸化物燃料の報告相空して 二書句の物質収古な規デした プロセ
水炉 MOA 然科の処理を忍足して、几条母の初員収入を促かした。フロビ
フフロール 坂の()、()の工程から出て 脇所旧士計符の外田 二二
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h) 電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h) 電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b) 簡易成型・焼結 【電解還元】溶融 LiCl 中(650℃)で電解することにより、酸化物を金
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h) 電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b) 簡易成型・焼結 【電解還元】溶融LiCl 中(650℃)で電解することにより、酸化物を金 属に還元
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結 【電解還元】溶融LiC1 中(650℃)で電解することにより、酸化物を金 属に還元 (c)一次電解還元、(d)二次電解還元、(e)付着塩の粗回収
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結 【電解還元】溶融LiCl 中(650℃)で電解することにより、酸化物を金 属に還元 (c) 一次電解還元、(d) 二次電解還元、(e)付着塩の粗回収 【電解精製】溶融LiCl-KCl 中(500℃)で電解することにより、FP を
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h) 電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結 【電解還元】溶融LiCl 中(650℃)で電解することにより、酸化物を金 属に還元 (c)一次電解還元、(d)二次電解還元、(e)付着塩の粗回収 【電解精製】溶融LiCl-KCl 中(500℃)で電解することにより、FP を 分離しPu 富化度を調整
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h) 電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b) 簡易成型・焼結 【電解還元】溶融 LiCl 中 (650℃)で電解することにより、酸化物を金 属に還元 (c) 一次電解還元、(d) 二次電解還元、(e) 付着塩の粗回収 【電解精製】溶融 LiCl-KCl 中 (500℃) で電解することにより、FP を 分離し Pu 富化度を調整 (f) 電解精製、(g) 陰極処理
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着してFPを含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結 【電解還元】溶融LiCl 中 (650℃)で電解することにより、酸化物を金 属に還元 (c)一次電解還元、(d)二次電解還元、(e)付着塩の粗回収 【電解精製】溶融LiCl-KCl 中 (500℃)で電解することにより、FPを 分離しPu 富化度を調整 (f)電解精製、(g)陰極処理 【廢棄物処理】廢棄物からの IL Pu MA 回収と廢棄物量低減を図り FP
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着してFPを含む塩が電解精製槽へ排出されるため、(h)電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結 【電解還元】溶融LiCl 中 (650℃)で電解することにより、酸化物を金 属に還元 (c)一次電解還元、(d)二次電解還元、(e)付着塩の粗回収 【電解精製】溶融LiCl-KCl 中 (500℃)で電解することにより、FPを 分離し Pu 富化度を調整 (f)電解精製、(g)陰極処理 【廃棄物処理】廃棄物からの U, Pu, MA 回収と廃棄物量低減を図り、FP を処分に適した安定な形能に固化
スフローは、次の(a)~(j)の工程から成る。物質収支計算の結果、還元 生成物に付着して FP を含む塩が電解精製槽へ排出されるため、(h) 電解 還元槽の塩処理は不要となる可能性が高いことが示された。 さらに、各工程について、詳細内容、必要性、達成事項、懸案事項と 課題をまとめた。以上の検討により、乾式再処理プロセスが酸化物燃料 に対して適用可能であり、十分に実用化しうる技術であることを実証で きたと考える。 【前処理】酸化物を使用済燃料から取り出して、電解還元用の陰極容器 に装荷 (a)酸化熱処理脱被覆、(b)簡易成型・焼結 【電解還元】溶融LiCl 中(650℃)で電解することにより、酸化物を金 属に還元 (c)一次電解還元、(d)二次電解還元、(e)付着塩の粗回収 【電解精製】溶融LiCl-KCl 中(500℃)で電解することにより、FP を 分離しPu 富化度を調整 (f)電解精製、(g)陰極処理 【廃棄物処理】廃棄物からの U, Pu, MA 回収と廃棄物量低減を図り、FP を処分に適した安定な形態に固化 (b)電解還元榑の塩処理(j)電解精製構の塩処理

の不溶解性残渣処理
本研究開発では、酸化物燃料の乾式冉処理プロセスについて、根幹と たえまな)
なる電解還元上程を効率化するための試験に重点を置いて研究を実施
した。ここでは、100 g 規模の U_2 および模擬使用済燃料を用いた試験
で、実用的な処理速度として目標にしていた 10 時間以内に酸化物を金
属に還元することを再現性よく達成した。さらに、プロセス全体の成立
性を実証するため、酸化物燃料の取扱いや電極構造に関して実機への拡
張性を念頭におき、前処理/電解還元/電解精製の連続プロセス試験を行
った。ここでは、前処理で酸化物を多孔質性ペレットに成型することに
より、以降のプロセスがハンドリングや処理速度の点で容易になること
を示し、さらに還元生成物の電解精製にも成功した。これらプロセスに
おける Pu, Am や主な FP の挙動、酸素発生陽極材料についても貴重な基
礎データを蓄積した。最後に試験結果を反映し、最適化したフローシー
トと元素毎の物質収支を提示した。さらに、各プロセスについて、必要
性、達成事項、懸案事項と課題をまとめた。以上の検討により、乾式再
処理プロセスが酸化物燃料に対して適用可能であり、十分に実用化しう
る技術であることを実証できたと考える。現状で特に優先順位の高い開
発課題としては、実規模での電解還元の実証および陽極の開発(構造と
材料)が挙げられた。
また、副次的に得られた成果としては、溶融塩中に溶存するアクチニ
ドやFPの吸光ピーク強度から多元素系においても濃度を迅速に測定で
きる可能性を示したこと(例えば、電解精製槽の濃度管理に応用)、組
成や温度が異なる溶融塩中で酸素発生陽極として使用可能な材料を見
いだしたことなどが挙げられる。
【論文、特許等】
(1) T. Kato, Y. Sakamura, T. Iwai and Y. Arai, "Solubility of Pu and rare-earths
In LICI-Li ₂ O melt [*] , Radiochim. Acta, 97 , 183 (2009).
(2) I. Sakamura, and I. Omori, "Electrolytic Reduction and Electrolerining of Uranium to Develop Pyrochemical Reprocessing of Oxide Fuels" Nucl
Technol., in print.
(3) T. Fujii, et al., "Electronic absorption spectra of U(IV) in molten
LiCl-SrCl ₂ and CsCl-SrCl ₂ ", Electrochemistry, in print.
(4) Y. Sakamura, "Solubility of Li ₂ O in LiCl-MCl _x melt (M: Na, K, Cs, Ca, Sr,
Ba)", J. Electrochem. Soc., manuscript in preparation.
(5) Y. Sakamura, "Effect of alkali and alkaline earth chloride (KCl, CsCl, SrCl, and BoCl) addition on electrolytic reductor of UO is realized.
$J_1 C_1^{(2)}$ and $J_2 C_2^{(2)}$ addition on electrony conclusion of UU_2 in molten $J_1 C_1^{(2)}$. Nucl Mater manuscript in preparation
口 前 举表
<u>ロッカス</u> (1) 大森 <u>老</u> 坂村羗治 "酸化物燃料の雷解還元処理に関する技術関発
(4) 八林子、次日我山、 政山初が179电府座九だ生に因りる以前開光 (8)工学相構 IIO. 還示試驗における処理は使の向上" 日本百乙五学
(4) 加縮制で、次行我们、石井子、兀井承天、 飯11初22件の电件速元処
生に因りる1211円光(7)14間 LICI-Li20 中の「U2O3の1谷胜及側足、 日本百乙力学会 07 年秋の十合 世五周 2007 年 0 月 27 日
 ・ロークボリノナム 01 十次の八云、北九川、2001 牛 9月 21 日 (2) 岡村信生 小良数 垣嶋悠土 合田工舞 垣村美浜 「L:OLIVOL」
し、回行に工、小水坊、油雪咩八、月田工碑、次竹我伯、「LICI-NCI俗」 動作由でのは田这株判からの UO 雪軺同時・UO と告合屋 ED 二妻
□ ma=_ 「ヽッ)区用语が11 ル つッ UU2 电肝凹収 · UU2 こ貝亚偶 FF 儿糸

	に上る構擬体田溶燃料を田いた其礎試験」 日本佰子力学会 07 年秋
	による候擬使用頂怒料を用いた金硬码硬」、日本原丁万子云 07 牛朳の十合 北九州 2007 年 0 日 27 日
	(A) 版材差沿 "溶融 L:CI 中の L: O 溶解度に対するアルカ川 全属なるい
	(4) 災竹我伯、俗簡 LICI 中の LI20 俗胜度に対するアルカリ並属のるい
	はアルカリ上類金属塩化初の称加効未、第 39 回俗離塩化子討論云、 2007 年 11 日 20 日 - 松自
	2007年11月30日、松島
	(5) I. Kato, Y. Sakamura, I. Iwai and Y. Arai, "Solubility of Pu and rare-earths
	In LICI-LI ₂ O meit, Plutonium Futures The Science 2008, Dijon, France, July 7 11, 2008
	(6) V Sakamura, T. Omori, "Electrolytic Reduction and Electrorefining of
	Uranium for Developing the Pyrochemical Reprocessing of Oxide Fuels"
	The International Pyroprocessing Research Conference (IPRC) Jeiu
	Island, Korea, August 24-27, 2008.
	(7) Y. Sakamura, "Effect of alkali and alkaline earth chloride addition on
	electrochemical reduction of UO ₂ in molten LiCl", Proc. 2008 Joint
	Symposium on Molten Salts, S. Deki et al. Eds., pp. 916-921, Kobe, Japan,
	October 19-23, 2008.
	(8) T. Fujii, et al., "Electronic absorption spectra of U(IV) in molten
	LiCl-SrCl ₂ and CsCl-SrCl ₂ ", Proc. 2008 Joint Symposium on Molten Salts,
	S. Deki et al. Eds., pp. 962-966, Kobe, Japan, October 19-23, 2008.
	(9) 坂村義治、大森孝、「酸化物燃料の電解還元処理に関する技術開発
	(10)ウランを用いた電解還元と電解精製の工学的連続試験」、日本原
	子力学会 08 年秋の大会、高知、2008 年 9 月 4-6 日
	(10) 坂村義治、「溶融 LiCl-Li ₂ O 中における希土類元素の挙動」、電気化
	学会第 76 回大会、京都大学、2009 年 3 月 31 日
	(11) Y. Sakamura, M. Iizuka and T. Inoue, "Development of Oxide Reduction
	Process to Bridge Oxide Fuel Cycle and Metal Fuel Cycle", GLOBAL
	2009 "The Nuclear Fuel Cycle: Sustainable Options & Industrial
	Perspectives", Paris, France, Sept. 6-11, 2009.
	(12) 坂村義治、赤城正晃、「酸化物燃料の電解還元処理に関する技術開
	発 (11)模擬使用済燃料を用いた電解還元試験」、日本原子力学会
	2009 年秋の大会、東北大学、2009 年 9 月 18 日
	(13) 赤城正晃、坂村義治、「酸化物燃料の電解還元処理に関する技術開
	発 (12)模擬使用済燃料の還元生成物を用いた電解精製試験」、日本
	原子力学会2009年秋の大会、東北大学、2009年9月18日
3. 事後評価	
	・計画されたことは確実に実施されたが、進実規模UOo還元試験で
・実施計画の進捗	白金電極がリチウムによる腐食で破損するという想定外の事象が発
・革新的たブレイクス	生したことについて、その原因が究明出来ていたいことは、小規模
	での電解で起こっている現象の理解が十分でかかったためであり
• 成里及75彩展灶	へ後の課題として 音力産された
成本及0 元辰江	
	・ 防極しの电机省度か、
	しなくなる呪豕が観祭されたことは、电極衣面での挙動を正確に拒
	にわりる味趣を兄版りるにめに、竜極衣面での挙動の解明に取り組
	んでもらいたい。
	T-to-sor at a second
	 ・ 軽水炉燃料の電解・乾式再処埋による局速炉用金属燃料製造の実現
	しん おけて 一本一本町准していると評価する

	進める上での課題を明らかにすることが出来たと評価できる。 ・ 電解還元プロセスにおける素反応をさらに細かく解明する等、電解 のメカニズムを明らかにして、現象の理解を深めていくことが必要 である。その結果を基に、基本的なところについての定式化に努め てもらいたい。
	 【成果及び発展性】 ・電解還元法により酸化物燃料ペレットを金属に転換できることを、 準実規模での試験において、電流効率等を明確にするなどにより確 認できたことから、今後につながりうる結論が得られたものと評価 できる。 ・乾式再処理で発生する高レベル廃棄物について、廃棄物処理として検 討したガラス結合ソーダライト固化については、放射性元素の閉じ 込め法として最適であるかは検討の余地が有ると思われる。今後の プロセス検討を踏まえて、発生する廃棄物の内容を見定めた上で、 処理法の選択肢について検討しておくことが必要である
4. その他	 処理法の選択肢について検討しておくことが必要である。 ・工学規模設備においては定電流電解での運転が想定されるので、電 解の時間経過に伴う還元率の変化を正確に理解しておくことが必要 である。溶融塩電解の研究においては、電解還元の現象を工学規模 の設備においても安定してコントロールできる方法を見出し、それ を実証することが重要である。 ・使用済燃料を粉末化しそれを成型した後、焼結加工して多孔質ペレ ットを作製するという前処理技術は、極めて厳しい条件下で操作す ることが強いられる。使用済燃料の粉末のハンドリングはセル内で 行わなければならないことなどから、本プロセスの技術的成立性は 極めて厳しいものと思われるので慎重に検討してもらいたい。