原子カシステム研究開発事業 -基礎研究開発分野-若手対象型 事後評価総合所見公表用フォーマット

研究開発課題名(研究機関名)

陽電子マイクロビームによる原子力材料のミクロ劣化解析(独立行政法人日本原子力研究開 発機構)

研究開発担当者

独立行政法人日本原子力研究開発機構 総括代表者:河裾厚男 研究期間及び予算額:平成17年度~平成19年度(3年計画)89,062千円

項目	要約
<u><u></u>頃日</u> 1.当初の目的・目標	要約 原子炉構造材料や燃料被覆材料などの劣化診断技術として、世界最高 レベルの陽電子マイクロビーム技術を開発することが、本研究開発課題 の第一目標である。次いで、各種の熱処理後に高温高圧水中で応力腐食 割れを起こしたステンレス(SUS)材や「ふげん」実機の製造方法を忠実 に再現した溶接配管、及び、次世代高温ガス炉での使用が検討されてい るジルコニアカーバイド(ZrC)被覆模擬燃料に対して、開発した陽電子 マイクロビーム技術を用いた評価試験を実施する。以下では、各事業 項目についての目標と計画を記述する。 (1)陽電子マイクロビームの開発 ①陽電子マイクロビーム収束技術の開発
	【平成17年度】走査電子顕微鏡技術を転用した陽電子マイクロビーム 形成の検討課題として、既設の陽電子ビームライン(エネルギー 10-20keVの陽電子ビーム発生が可能)を用いた陽電子ビーム収束実験 を行う。この際、新たに真空排気装置を整備して測定試料を超高真空下 に設置し、試料表面上においてビーム直径が200µm以下に収束できる ことを確認する。また、陽電子発生部のエミッタンスに対する陽電子ビ ームの縮小率を評価し、さらなる陽電子ビーム収束のための指針を得 る。
	【平成 18 年度】陽電子マイクロビーム発生装置を用いて形成した陽電 子マイクロビームを試料表面上でビーム直径 10µm 以下に収束する技 術を開発する。 【平成 19 年度】陽電子マイクロビーム発生装置において、一次レンズ、 中間レンズ及び対物レンズの励磁電流を個別に制御することで、ビーム 収束に対する最適条件を割出し、試料表面上で陽電子マイクロビームを 5µm以下に収束する。
	 ②陽電子マイクロビーム二次元走査技術の開発 【平成17年度】実機材料の評価のためには、陽電子マイクロビームの二次元走査により局部領域での微視的な劣化を検出することが必要となる。電子ビーム発生装置を用いてビーム軸調整を行い、試料表面上の約5mm×5mmの領域において、形成した収束陽電子ビームの走査が可能であることを確認する。 【平成18年度】形成した唱電スマイクロビームを二次元表本継携及び
	【平成 16 年度】形成した陽電ナマイクロビームを二次元走査機構及び 静電偏向により、試料表面上約 100×100μm の領域において線数 10× 10 本以上で走査する技術を開発する。 ③陽電子ビーム単色化技術の開発 【平成 18 年度】陽電子マイクロビームを形成するため、陽電子マイク ロビーム発生装置の Na-22 小型陽電子線源(線源窓径:1mm 以下)からの 陽電子ビームに対する減速効率を 10 ⁻⁴ 以上に維持する技術を開発する。

また、高効率ガンマ線計測装置により減速材効率を測定する。
(4)陽電子ビームバルス化及び測定回路の構築
【半成18年度】陽電子寿命計測、及び、放射線バックグラウンドの抑
制のため、陽電子マイクロビームを陽電子ビームパルス化装置により、
パルス幅0.5ナノ秒以下にパルス化する技術を開発する。また、陽電子
寿命計測のための光電子増倍管及び陽電子寿命計測装置を用いた陽電
子寿命計測装置、及び、放射線バックグラウンド計測のためのガンマ線
計測機器を用いた高効率ガンマ線計測装置を構築する。
(2)実証試験及び材料評価
【平成 19 年度】
・腐食環境+放射線下における粒界亀裂進展の前駆状態の観察
腐食割れを起こし易い溶接部位の品質、腐食割れ後の材料の劣化状態
等を、腐食量、照射量と照射温度の関数として蓄積・整理し、陽電子マ
イクロビームを用いた実機材料劣化診断に資するべく、以下の測定等を
行う。「ふげん」において実施された溶接方法を極力忠実に踏襲するこ
とで、実機の伝熱管などを模擬したステンレスの溶接試験片を作製す
る。塩化マグネシウムを用いて腐食試験を行い、腐食が優先的に発生す
る部位を特定するとともに、この周辺において陽電子マイクロビームを
用いた陽電子消滅測定を行う。また、上述の溶接試験片に対して中性子
照射環境を模擬したイオンビーム照射を行う。その後、塩化マグネシウ
ムにより試験片を腐食し、粒界亀裂進展の前駆状態の腐食割れ周辺にお
いて陽電子マイクロビームを用いた陽電子消滅測定を行う。
・高温・高圧水+応力環境下における粒界亀裂進展の前駆状態の観察
執鋭触化度 即ち クロムケラ層の形成と腐食促進の関係を明確にし
現在進められていろ腐食割れのモデル構築に資すろべく 以下の測定等
を行う。SIIS304 及び熱鋭敏化度を系統的に変化させた SIIS316 材を用い
て 高温高圧水中で広力腐食割れを誘起させる これらの試料について
腐食割れ周辺の欠陥の生成状能や化学状能の変化を陽雷子マイクロビ
ームに上り系統的に調べる これに上り 腐食割れを起こした部位の破
面 $ nm$) が 単純 か $ nm$) か = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
山ろか、市いけ角烈失避近座に盾子穴引が形成されているか笑。詳細か
4日を得る
・日期少化診断技術の検討と評価
+ 約57 L い 的 反 N い 仮 N こ T 画 ト で 得 た
L く 時に 個 足 衆 死 ー 成 初 旅 ー な ら し に 同 皿 同 二 バ ー 心 乃 衆 死 ー に や け ろ 少 ル デ ー タ を 耳 に 直 1 ・ 直 圧 水 及 び 故 財 線 晋 倍 下 で の 粒 異 魚 図 准
日本の前取出になける少しエデルを構築するとしたに この少しエデル
し阻害エマイクロビーム少化診断結果しの対応関係を明らかにする そ
この电」マイクロビーム労化が例相木との対応関係を切りがにする。て
40により、同価・同江小「心刀衆境」にわりる防电」マイクロビームに トス日期少ル診断は街の強立に恣するための検針レレルに証価を行る
よる平朔方化が例12個の確立に員りるための便討ここもに計画で117。
・ 向価ルヘア燃料恢復材料の計価 古匁約 1mm に敷延した直泪ガス后措塔紛約(技入民た約 90
世住利 IIIII に 2π に π π π に π π π π π π π π
灰奈-ンリコンルーハイト(またはンルコー)ルーハイト)
によつて休護したもの」に対して、高温・高速甲性丁原射条件を快搬し たイナン昭和たちを、たの後、女地悪屋の八部測点た行きたみに弾艇フ
に1 A イ 照別 211 J。て い 仮、 合 攸 復 層 い 万 離 側 正 を 行 り に め に 僦 松 十
を十球状に研磨することにより町面試料を作要する。この町面において 明示スーノクロビーノたままナストンで時点し思えにいいますという。
防电ナマイクロビームを定置することで限内と外面における欠陥生成
と限り焼さ柿り(照射収補)に関する知見を侍る。侍られた陽電子マイ
クロビームによる务化診断情報を登埋・考察することで、燃料の使用限
界を明らかにする。

	(3)まとめと評価
	大業務のとりまとめとその評価を行う。
9 研究式用	(1) 陽雷子マイクロビームの開発
2. 训九风术	①陽電子マイクロビーム収束技術の開発
・当初予定の成果	【平成17年度】走杳雷子顕微鏡技術を転用した陽雷子マイクロビーム
・特筆すべき成果	形成の検討課題として、既設の陽電子ビームライン(エネルギー10keV
・ 副次的た成里	の陽電子ビーム発生が可能)を用いた陽電子ビーム収束実験を行った。
	新たに真空排気装置を整備して測定試料を超高真空下に設置し、試料表
・論又、特計等	面上においてビーム直径が 100 µm 以下に収束できることを確認した。
	また、陽電子ビームエミッタンスを2πmm・mradと決定した。
	【平成18年度】陽電子マイクロビーム装置は、陽電子ビーム発生部、
	陽電子ビーム輸送部、偏向電磁石、陽電子マイクロビーム形成光学系、
	試料チャンバー等から構成されている。陽電子マイクロビームを形成す
	るためには、陽電子ビーム発生部において多段電極に印加する電圧配分
	を最適化する必要がある。そこで、実機の設計に先立って数値シミュレ
	ーションを行い、陽電子マイクロビーム形成に必要な陽電子発生方法に
	ついて検討した。その結果、ビーム引出電極、ウェネルト電極、ソア電
	極及びアノード電極から構成される多段円孔電極を用いることで、エネ
	ルギー20keV、直径 1mm 以下の陽電子ビームが発生可能との見通しを得
	た。平成 17 年度の結果を踏まえ、陽電子ビーム輸送のための磁界レン
	ズとエネルギー選別のための偏向電磁石について設計した。陽電子マイ
	クロビーム形成光学系については、機能性・性能・寸法などを勘案して
	走査電子顕微鏡 (TOPCON-SM300) を使用することとした。このようにし
	て、陽電子マイクロビーム装置の全体設計を行った。
	小型陽電子線源と固体ネオン減速材を用いて、低エネルギー陽電子を
	発生させた。陽電子ビーム発生部における円孔電極に印加する電圧を最
	適化し、エネルギー最大 20keV、直径約 1mm の陽電子ビームが発生する
	ことを確認した。磁界レンズと偏向電磁石を用いて、発生した陽電子ビ
	ームが陽電子マイクロビーム形成光学系まで問題なく輸送できること
	を確認した。陽電子マイクロビーム光学系のパラメータサーベを行い、
	ビーム収束に最適な条件を探した。ナイフエッジを用いてビーム径を計
	測した結果、収差補正を行わない場合でも約14µmまで収束可能である
	ことを確認した。このビーム径には、ナイフエッジ先端部による陽電子
	ビームの散乱効果があるため、実際のビーム径より過大に計測している
	と考えられる。
	陽電子マイクロビーム収束技術の開発では、走査電子顕微鏡技術を転
	用することで直径 14µm 以下の陽電子マイクロビームの形成に成功し
	た。計測方法として確立されているナイフエッジを用いたビーム径の計
	測では、上記の理由により、当初の目標のビーム径である 10 μm が達成
	できたかを厳密に確認することは困難であるが、ナイフエッジを用いて
	計測されたビーム径は上記のとおり実際のビーム径より過大に計測さ
	れていると考えられることから、当初の目標のビーム径である 10μm
	については、概ね達成した。
	【平成 19 年度】陽電子マイクロビーム発生装置において、固体ネオン
	減速材の作製条件の最適化、一次レンズ、中間レンズ及び対物レンズの
	励磁電流の個別制御、アパーチャ径および挿入位置の最適化など、装置
	全体の動作条件を追及することで、ビーム径の更なる低減を図った。そ

の結果、試料表面上で陽電子マイクロビームを 1.9µm 以下に収束する
ことに成功し、当初目標としていた 5 µm 以下の空間分解能を達成した。
②陽電子マイクロビーム二次元走査技術の開発
【平成 17 年度】電子ビーム発生装置を用いてビーム軸調整を行い、試
料表面上の 5mm×5mm 以下の領域において、上で形成した陽電子ビーム
の二次元走査が可能であること、及び、空間分解能30μmで表面上の微
細構告が識別できることを確認した
「平原」 18 年度】 唱雪子マイクロビー人を一次元で走杏すろために 試
れて回たして静電柵向によりて ちをだ重りの方法とて ちて回たし て封約白休を主本する古法が考えられる 唱雪ユマイクロビー人を用い
に尿丁刀材料の計画には、比較的人でな頃域がり飯神な頃域にヘクシン
クリンサる必要がめると与えられる。てこじ、祖動と傾動の凹機能を兼
ね佣えにステッノモータを用いて、試科日体を走省することにした。 (例
」 動では最小ステップか 1 μm となるように製作した。また、一次元走金
機構と4)の陽電子消滅測定回路をリンクするシーケンスフロクラムを
作製し、全ての測定が目動で行えるようなシステムを構築した。
形成した陽電子マイクロビームを試料の適切な位置に照準できるこ
とを確認し、校正メッシュを用いてビームの二次元走査を行った。その
結果、光学顕微鏡で観察されるものと同等の陽電子消滅(ドップラー拡
がり)イメージが得られることを確認した。なお、平成 17 年度の結果
と比較して 4 倍以上の走査線で陽電子消滅イメージが得られることを
確認した。ビーム径が20μm程度である場合でも、10μm程度の構造物
が判別できることを確認した。
陽電子マイクロビーム二次元走査技術の開発では、試料表面上の100
×100μm以上の領域において、走査線数 10×10 本以上にて陽電子消滅
ガンマ線の二次元走査計測に成功し、当初の目標を達成した。
③陽電子ビーム単色化技術の開発
【平成 18 年度】できる限り輝度の高い陽電子マイクロビームを発生す
ろためには 強力でかつ発生面積の制限された小型陽電子線源と高効率
なたいたは、エントで、アニエニュージャーズの電子が旅生にのがす
ない、ない、 知久 こなる。 ここ (アンアンアンアン いい ここ アンシ にん うに
設置するため 漏泄が無い とが絶対条件とたる そこで 視板の規則
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを制作 その後加圧試験を行うことで漏油の無いたのを選別
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mm となるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認 された。
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認 された。 現在の陽電子減速材では、希ガス固体減速材が最も高効率であると考
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認 された。 現在の陽電子減速材では、希ガス固体減速材が最も高効率であると考 えられる。そこで、陽電子線源窓に希ガス固体が成膜できるように、陽
設置するため、漏洩が無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認 された。 現在の陽電子減速材では、希ガス固体減速材が最も高効率であると考 えられる。そこで、陽電子線源窓に希ガス固体が成膜できるように、陽 電子線源の冷却システムを設計・製作した。その結果、線源が4Kまで
設置するため、漏洩か無いことが絶対条件となる。そこで、複数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認 された。 現在の陽電子減速材では、希ガス固体減速材が最も高効率であると考 えられる。そこで、陽電子線源窓に希ガス固体が成膜できるように、陽 電子線源の冷却システムを設計・製作した。その結果、線源が4Kまで 冷却できることを確認し、線源窓へのネオン固体の成膜に成功した。そ
設置するため、漏洩が無いことか絶対条件となる。そこで、復数の線源 カプセルを製作し、その後加圧試験を行うことで漏洩の無いものを選別 した。陽電子線源を極力局部的に形成することが必要であるが、逆に線 源密度が高くなるため内部での自己吸収によって放出効率が減少する。 また、線源形成領域を小さくすると作業時間が増え、被曝の危険が増え る。このような事情から、陽電子線源径は1~2mmとなるようにした。 18.5MBq/100µ1のNa22水溶液をマイクロシリンジにより抽出し、製作 した陽電子線源カプセルに滴下・乾固した後、真空中で封止することで、 線源強度37MBq及び55.5MBqの密封陽電子線源を一個づつ製作すること ができた。ソレノイドコイルとヘルムホルツコイルから構成される簡易 型の陽電子ビームシステムを構築し、製作した陽電子線源を装荷してビ ーム発生量を計測したところ、3×10 ³ e ⁺ /sec の陽電子ビームが発生で きることが確認された。また、線源の漏洩も全く起こらないことが確認 された。 現在の陽電子減速材では、希ガス固体減速材が最も高効率であると考 えられる。そこで、陽電子線源窓に希ガス固体が成膜できるように、陽 電子線源の冷却システムを設計・製作した。その結果、線源が4Kまで 冷却できることを確認し、線源窓へのネオン固体の成膜に成功した。そ の結果、タングステン減速材(変換効率:5×10 ⁻⁴)よりも2倍以上の効率

(変換効率:1×10 ⁻³)で陽電子が単色化できることを確認した。
陽電子ビーム単色化技術の開発では、直径約 1mm の小型陽電子線源の
開発に成功するとともに、その表面に固体ネオンガス減速材を形成する
ことで 10 ⁻³ の変換効率で陽電子ビームが形成できることを確認した。以
上より、当初の目標を上回る一桁高い効率の減速材の開発に成功した。
④陽電子ビームパルス化及び測定回路の構築
【平成 18 年度】原子力材料の評価では、放射化に伴うバックグラウン
ドの低減が必要となる場合がある。また、陽電子消滅ドップラー拡がり
測定に加えて、陽電子寿命測定を行う必要がある。これらの要求を満た
すためには、陽電子ビームを短パルス化することが必要となる。そこで、
一重円筒電極から構成されるダブルギャップ型プリバンチャー E×B
フィルター型チョッパー、空洞共振器を用いたシングルギャップ型メイ
ンバンチャー及びパルス化回路(雷基系)から構成される陽電子ビーム
パルス化生置を設計・制作した。その結果 鍋り返し周波数 40MHz パ
ルス幅 150 ピコか 及び SN H 10^3 以上の短パルス 提電子ビームが発生
オストレを確認した
りることで唯心した。 上記の阻電スビートパルフルけ低エラルギー領域, 連結磁界中で行る
二山の陽电」 ムバルハルは低二イルイ 原域 医脱磁外生く17
250000にの、形成されにハルへ防电」し、ムを加速しつつ升磁介に 計画をわければれられい。ステズー加速等し従用しいづた用いた阻害了
「川山さなり40はなりない。てこく、加速官と幽外レンへを用いた勝电」
こーム別田米を設計・衆作した。これを防电サビームハルス化表直の木 地に接続していた。1月山宇殿な行ったりこで声(2,1) 和座にば、した
「「「「「「「」」」」「「」」「「」」」「「」」」「「」」」」「「」」」「「」」」」
収 収 、 、 北 、 、 、 、 、 、 、 、 、 、
高い効率で消滅カンマ線計測かり能となるように、大口径の高純度ケ
ルマニワム検出器を用いた高効率カンマ線計測装置を構築した。その結
果、約70%の相対効率で計測が行えることを確認した。また、光電子増
倍管とサンプリングレート 1GHz のデジタルオシロスコープを用いた陽
電子寿命計測回路を統合することで、陽電子寿命計測装置を構築し、時
間分解能180ピコ秒で陽電子寿命計測ができることを確認した。上述し
たように、これらの測定が陽電子ビームの二次元走査と同期できるよう
なシーケンスを構築し、陽電子消滅の空間マッピングが行えるようにし
TE.
陽電子ビームパルス化及び測定回路の構築では、パルス幅約 150 ピコ
秒及び SN 比 10 ³ 以上の短パルス陽電子ビームの発生に成功するととも
に、約70%の相対効率を持つ陽電子消滅計測回路を構築した。このこと
で、当初の目標を達成した。
(2)実証試験及び材料評価
【平成 19 年度】
・腐食環境+放射線下における粒界亀裂進展の前駆状態の観察
腐食割れを起こし易い溶接部位の品質と腐食割れ及び照射後の材料の
劣化状態等を整理し、陽電子マイクロビームを用いた実機材料劣化診断
に資するべく、以下の測定等を行った。
「ふげん」において実施された溶接方法を極力忠実に踏襲することで、
実機の伝熱管などを模擬したステンレスの溶接試験片を作製した。塩化
マグネシウムを用いて腐食試験を行い、腐食が発生する部位において陽
電子マイクロビームを用いた陽電子消滅測定を行った。また、中性子照
射環境を模擬したイオンビーム照射(イオン種:鉄、照射量:3dpa、照
射温度:300℃)を行った後に、塩化マグネシウムにより試験片を腐食し、
割れ周辺において陽電子マイクロビームを用いた陽電子消滅測定を行
った。
その結果、未照射の状態では、溶接位置からやや離れた熱影響部で陽

電子消滅ガンマ線ピーク強度(S パラメータ)の減少が見られた。これ は、熱影響部では、溶接時の加熱のために、空孔型欠陥が低減している ことを示している。熱影響部ではクロム炭化物が析出すると考えられる が、陽電子消滅特性に与える影響は認められなかった。腐食によって、 熱影響部を中心とした領域で亀裂が発生した。亀裂の近傍では陽電子消 滅ガンマ線ピーク強度(Sパラメータ)が増加したが、その変化は微弱で あった。化学的な腐食の影響が強い環境下においては、亀裂進展に先立 つ原子空孔が導入は微量であると考えられる。 溶接部、熱影響部、及び、母材の何れの部位においても、イオンビー ム照射により陽電子消滅ガンマ線ピーク強度(Sパラメータ)が一様に 増加した。これは、照射により導入される原子空孔の密度が、部位によ らないことを示している。詳細な電子運動量分布の解析から、イオンビ ーム照射により生成した原子空孔は、単空孔程度の大きさのものである とが判明した。照射後も腐食により亀裂は生ずるが、同一条件で腐食 した未照射材と比べ、亀裂の発生は少ない。これは照射硬化による表面 状態の変化であると考えられる。亀裂近辺においても照射による空孔型 欠陥の影響が強く出るが、それが亀裂の進展に影響しているようには見 えない。このことからも、化学的な腐食による亀裂進展には原子空孔が 果たす影響は強くないと考えられる。 ・高温・高圧水+応力環境下における粒界亀裂進展の前駆状態の観察 熱鋭敏化度、即ち、クロム欠乏層の形成と腐食促進の関係を明確にし、 現在進められている腐食割れのモデル構築に資するべく、以下の評価を 行った。 SUS304 材、及び、熱鋭敏化度を系統的に変化させた SUS316 材を用い て、高温・高圧水中で定加重を印加し応力腐食割れを誘起させた。これ

らの試料について、腐食割れ周辺の欠陥の生成状態や化学状態の変化を 陽電子マイクロビームにより系統的に調べた。その結果、いずれの試料 においても亀裂近傍で陽電子消滅ガンマ線ピーク強度(S パラメータ) が増加し、亀裂進展に先立ち空孔型欠陥が導入されていることが明らか となった。電子運動量分布を詳細に解析したところ、この空孔型欠陥は、 マイクロボイドのような空孔集合体ではなく、単一空孔のような微細な 原子空孔であることが明らかになった。熱鋭敏化度が高く亀裂進展が容 易である条件においては、Sパラメータは明瞭に上昇した。一方、熱鋭 敏化度が低く亀裂進展がない試料については、Sパラメータの変化は不 明瞭であった。このことは、亀裂進展に先立つ空孔型欠陥の生成が、熱 鋭敏化度が高いほど、広範囲にわたっていることを示している。この知 見は、熱鋭敏化度が高いほど亀裂先端部に蓄積されるひずみが小さく、 容易にかつ多数の分岐を伴って亀裂が進展する事実と矛盾しない。さら に、亀裂上では、陽電子消滅ガンマ線ピーク強度(Sパラメータ)が低下 していることが明らかになった。これは、腐食割れを起こした部位の破 面空間が、単純な空隙状態にあるというより、酸化物などの不純物で充 填されている可能性が高いことを示している。このような特徴は、熱鋭 敏化度の高い条件において、より明瞭であることが分った。

以上より、熱鋭敏化度が高いほど、応力腐食割れ周辺で原子空孔が生 成され易いことが明らかになった。

・早期劣化診断技術の検討と評価

上で得た腐食環境+放射線下ならびに高温・高圧水+応力環境下にお ける陽電子マイクロビーム劣化診断データを基に、高温・高圧水及び放 射線環境下での粒界亀裂進展の前駆状態における劣化モデルの構築を 試みた。 上の結果は、腐食環境と応力集中により亀裂を発生させた場合、亀裂 が起こる前駆状態として原子空孔が導入されることを示している。近年 提唱されているタイトクラックモデルでは、原子空孔の生成が予測され ている。その原因として、亀裂先端での結晶の優先的な融解、表面酸化、 転位移動、亀裂先端部での静水圧応力、冷間加工、結晶粒界、照射影響 などが考えられている。高温・高圧水中で発生した亀裂においては、腐 食環境下で発生した亀裂よりも空孔型欠陥の影響が大きい。このことか ら、高温・高圧水中では静水圧や印加応力による広範囲な空孔の導入が 先行し、割れが進行すると考えられ、一方で腐食環境下では金属融解や 表面酸化といったより局所的な反応により空孔型欠陥が導入され割れ が進行すると考えられる。以上のように、空孔型欠陥の導入には環境に よる相違があるのではないかと考えられる。

以上より、本事業で開発に成功した陽電子マイクロビームは、亀裂未 満の劣化を非破壊に観察できるという点で早期劣化診断に役立つ知見 を与え、今後、さらに高強度・高信頼性をもつ次世代の原子力材料の開 発に有用である。

・高温ガス炉燃料被覆材料の評価

直径約 1mm に整形した高温ガス炉模擬燃料 (模擬燃料核を約 30 μ m 厚の 熱分解炭素およびジルコニアカーバイド (ZrC) 膜によって保護したも の) に対して、陽電子マイクロビーム走査を行い、ZrC に関する基本的 なデータの収集を行った。また高速中性子照射条件を模擬したプロトン 照射 (照射エネルギー: 20MeV、照射量: 1.6×10⁻³ dpa)を行った。各被 覆層の分離測定を行うために、微粒子を半球状に研磨して断面試料を作 製した。これらの試料において陽電子マイクロ ビームを走査し、ZrC 内に生成する欠陥の検出および特性評価を行った。

その結果、燃料被覆材として形成された ZrC 膜は、現状では単結晶 ZrC ほどの結晶性を有しておらず、多量の空孔型欠陥を含んでいること が明らかとなった。電子運動量分布の詳細な解析により、これらは Zr 欠損をより多く含む Zr-C 空孔の複合欠陥であることが示唆された。ま た、ZrC 膜の成長条件である C/Zr 比や内包されている遊離炭素量と陽 電子消滅ガンマ線強度 (Sパラメータ) に正の相関が見られた。これは、 炭素が多いほど Zr が不足し、上記のような複合欠陥が増大することを 示唆している。熱処理によって結晶性が向上することが確認されたが、 原子空孔は完全には除去できないことが分かった。ZrC 膜と内部の模擬 燃料核との界面では、特異なSパラメータ変化は見られず、界面に特有 の欠陥の蓄積などはないと考えられる。しかしながら、ZrC 膜内の厚さ 方向に関してSパラメータはなだらかに変化しており、不均一な分布を もって空孔型欠陥が存在していることが分かった。このような空孔濃度 の違いが、膜の焼き締りを起こす一因であると考えられる。プロトン照 射後には、陽電子消滅ガンマ線強度(S パラメータ)が増加し、空孔型欠 陥が生成することが見いだされた。しかし、照射前から材料内に存在し ていた空孔型欠陥の影響が消失するわけではなく、照射により生ずる欠 陥は新たに材料に付加され蓄積していくものであることが分かった。照 射材の断面を観測すると、照射前と同様に界面に特異なSパラメータ変 化は見られず、また ZrC 層および熱分解炭素層の両方で S パラメータが 同様に変化していることから、照射損傷による層間ひずみは発生しにく いものと考えられる。

(3)まとめと評価

世界最高レベルの収束度(最小ビーム径1.9µm)を持つ陽電子マイク

ロビーム装置の開発に成功した。さらに本装置を用いて、実機配管溶接
試験片と熱鋭敏化ステンレスについて、応力腐食割れ及びイオン照射後
に局部に発生した亀裂の状態観察が可能であることが実証できた。さら
に、従来は難しかった亀裂進展に伴う空孔型欠陥の生成を確認すること
ができた。このようにして得られた知見は、応力腐食割れメカニズムの
解明において役立てられると考えられる。本事業で実施した亀裂観察
は、複雑なメカニズムを持つ応力腐食割れの一部条件を観察したに過ぎ
ない。特に、割れが生じにくいとされる低炭素ステンレス鋼の亀裂進展
メカニズムの解明には多くの期待が寄せられている。陽電子消滅法は本
┃ 質的に空孔を高感度に検出できる技術であるため、従来の評価法では検
 出できないような微小欠陥を検出できると考えられる。そのため、低炭
- 素ステンレス鋼のように劣化が生じにくい材料であっても、その初期段
 階で評価が可能になると考えられ、評価期間の短縮に貢献すると考えら
- れる。開発した陽電子マイクロビームは、一方で、微小な模擬燃料の評
- 価にも役立つことが実証できた。即ち、被覆膜それ自身と燃料被覆膜
 界面の品質評価が可能となった。このように、今後、革新的原子力シス
テムを開発するにあたって重要となる材料の劣化解析に対して、共通基
盤技術として陽電子マイクロビーム技術の開発に成功した。
世界最高レベルの収束性能をもつ陽電子マイクロビームの開発に成
功することで、原子力材料の劣化過程について顕微評価が可能になっ
た。この技術を用いて、世界で初めて SUS 材の応刀腐食割れ問題や燃料 被覆材の品質に関する評価を進めた結果 亀裂先端部の原子空孔の生成
やZrC被覆膜の内包される原子空孔集合体と品質の関係について、新た
な知見を得ることに成功した。
なお、期間内に得られた成果についた実施した外部発表は以下の通り 【論文発表】
(1) 'Design of a positron microbeam using magnetic lenses', M.
Maekawa, R. Yu and A. Kawasuso, Phys. Stat. Sol. (c)4(2007)4016-4019.
(2) 'Positron microscopic analysis of crack failure in stainless
steels', R. Yu, M. Maekawa, Y. Miwa, T. Hirade, A. Nishimura
(3) 'Development and application of positron microbeam'. M.
Maekawa, A. Kawasuso, T. Hirade and Y. Miwa, Trans. Matter Res.
Soc. Jpn. 33 (2008) 287–290.
(4) Construction of a positron micro-beam in JAEA , M. Maekawa and A Kawasuso Appl Surf Sci in press
【口頭発表】
(1) '陽電子ビームの集束改善と応用研究'、于潤升、前川雅樹、河裾
07,20 ц (2) '電子レンズを用いた高空間分解能陽電子ビームの形成'、前川雅
樹、于潤升、河裾厚男、第43回アイソトープ・放射線研究発表会

平成 18 年 7 月 8 日
(3) '陽電子マイクロビーム装置の開発'、前川雅樹、河裾厚男、京都
大学原子炉実験所専門研究会「陽電子科学とその理工学への応用」
平成 18 年 11 月 18 日
(4) '陽電子マイクロビーム装置の開発と性能評価'、前川雅樹、河裾
厚男、第 44 回放射線・アイソトープ研究発表会 平成 19 年 7 月 5
日
(5)'高空間分解陽電子マイクロビームの開発'、前川雅樹、河裾厚男、
京都大学原子炉実験所専門研究会 平成 19 年 11 月 17 日
(6) '走査型陽電子顕微鏡の開発'、前川雅樹、河裾厚男、平出哲也、
三輪幸夫、第 55 回応用物理学関係連合講演会 平成 20 年 3 月 27
(7) '走査型陽電子顕微鏡の開発と原子力材料評価への応用'、前川雅
樹、河裾厚男、平出哲也、三輪幸夫、日本顕微鏡学会第 64 回学術
講演会 平成 20 年 5 月 21 日
(8) '陽電子マイクロビームを用いた原子力材料の評価'、前川雅樹、
河裾厚男、平出哲也、三輪幸夫、第45回放射線・アイソトープ研
究発表会 平成 20 年 7 月 4 日
【ポスター発表】
(1) 'Design of a positron microbeam using magnetic lenses', M.
Maekawa, R. Yu and A. Kawasuso, 14th International Conference
on Positron Annihilation (ICPA14), July22-28, 2006, Hamilton,
Canada.
(2) 'Positron microscopic analysis of crack failure in stainless
steels', R. Yu, M. Maekawa, Y. Miwa, T. Hirade, A. Nishimura
and A. Kawasuso, 14th International Conference on Positron
Annihilation (ICPA14), July22-28, 2006, Hamilton, Canada
(3) 'Development and application of positron microbeam', M.
Maekawa, A. Kawasuso, T. Hirade and Y. Miwa, Trans. Matter Res.
Soc. Jpn. 33 (2008) 287–290.
(4) 'Construction of a positron micro-beam in JAEA', M. Maekawa
and A. Kawasuso, The 11th International Workshop on Slow
Positron Beam Techniques for Solids and Surfaces(SLOPOS11),
France, 9-13, July,2007.
(5)' Application of positron microprobe for nuclear
materials', M. Maekawa, A. Kawasuso, T. Hirade, Y. Miwa and
A. Nishimura, 9th International Workshop on Positron and
Positronium Chemistry (PPC9), Wuhan, China, May 11-15, 2008.
【プレス発表】
「世界最高レベルの収束度を持つ小型陽電子顕微鏡を開発-原子力
材料のミクロな劣化診断が可能に」-平成19年12月7日、掲載紙 上
毛新聞(12/7)、日刊工業新聞(12/7)、日経産業新聞(12/7)、電気新
聞(12/7)、朝日新聞科学欄(12/14)

3. 事後評価	【目的・目標の設定の妥当性】
・目的・目標の設定の	・原子炉材料の局所的な空孔型欠陥による劣化状態の評価に陽電子消滅
妥当性	法を適用できるようにするため、従来に比し陽電子ビームを大幅に収束
・研究計画設定の妥当	させた陽電子マイクロビーム装置を開発する目的と目標の設定根拠は
性	妥当である。一方、開発した装置の実証試験として、陽電子消滅法が空
・研究費用の妥当性	孔型欠陥を評価できるとの前提に立って、これまで評価されたことのな
・研究の進捗状況	い IGSCC を発生させた SUS 材やイオン照射した ZrC の特性評価を行うこ
・研究交流	とを計画した目的・目標の設定には検討の余地があったと考えられる。
・研究者の研究能力	
	【研究計画設定の妥当性、研究の進捗状況】
	・着実に段階をおって装置を開発するとともに、実際の系に応用し成果
	を挙げた点はすばらしく、本事業は計画通り遂行されたものと判断す
	る。
	【研究交流、人材育成、研究者の研究能力、成果】
	・陽電子マイクロビーム装置を開発し、世界最高レベルの収束性能をも
	つ陽電子マイクロビームを達成したことは、素晴らしい成果であり、そ
	れを使って、き裂先端での空格子の増大等興味深い結果が確認できた。
	また、SCC と疲労亀裂とで亀裂先端での状態が異なることを見いだした
	のは機構を検討する上での良い成果であると考える。原子力研究以外に
	も波及効果がありそうで期待がもてる。
	・得られた成果の外部発信は精力的に進められており、人材育成におけ
	る成果はあったと思われる。
4. その他	・応力腐食割れに限らず、き裂先端では過度な塑性変形が生じていると
	推測され、塑性変形に伴う転位の相互作用により、非平衡濃度以上の原
	子空孔が存在することは知られている。粒界亀裂進展の結果として空孔
	濃度が上昇すると考えられることから、亀裂の前駆現象として、原子空
	孔の濃度の上昇を捉えることの妥当性を詳細に検討して欲しい。特に、
	診断の場合、き裂先端での局所的な塑性変形の開始と亀裂進展開始との
	時間的なずれに関する検討は重要である。また、亀裂伝播と亀裂発生に
	おける原子空孔の役割も区別して考察すべきであると思われる。鉄鋼材
	料中での原子空孔の移動度は、200℃付近において、急激に変化するた
	め、き裂が発生あるいは進展する温度の影響を検討することも重要であ
	る。

5. 総合評価	・当初想定した目標以上のものが達成でき、優れた成果が挙げられてい
	る。また、現場適応性や汎用性に関する検討も行われ、今後の展開につ
	いての課題も整理されており、よくまとまっている。特に、世界最高レ
	ベルの収束度を持つ陽電子マイクロビーム装置の開発に成功した点が
	高く評価される。今後は、ビーム強度の向上に取り組み、本技術の適用
	分野やそのために必要なビームの条件について様々な観点からの検討
	を期待する。
	・陽電子マイクロビームの収束技術の開発は局所的な原子空孔型欠陥の
	分布状況を調べるために不可欠な技術であり、本研究の意義が認められ
	る。
	(A)) 想定以上の成果が得られ、今後に大いに期待できる。
	B) 想定通りの成果が得られ、今後が期待できる。
	C)想定通りの成果が一部得られなかった。
	D)想定通りの成果が全く得られなかった。