令和元年度

文部科学省 国家課題対応型研究開発推進事業 原子カシステム研究開発事業

高速炉を活用した

LLFP核変換システムの研究開発

成果報告書

令和2年3月 国立大学法人 東京工業大学

本報告書は、文部科学省の原子カシステム 研究開発事業による委託業務として、国立大 学法人 東京工業大学が実施した平成28年度 ー令和元年度「高速炉を活用した LLFP 核変換 システムの研究開発」の成果を取りまとめた ものです。

目次	2
----	---

概略	х
1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-1
2. 業務計画	
2.1 全体計画 ····································	-1
2.2 各年度計画 ····································	-1
3 実施内容および成果	
3.1 LLFP 核データの収集・評価····································	-1
3.1.1 LLFP 核分裂収率に関わる研究【H28-H29】 ····································	-1
3.1.2 LLFP 中性子核データの評価検討【H30-R1】 ······ ·····························	-1
3.1.3 LLFP 中性子核データの評価検討【R1】 · · · · · · · · · · · · · · · · · · ·	-2
3.2 核変換ターゲットの材質、構造、配置(再委託先:東北大学)・・・・・・・・・・・ 3.2	-1
3.2.1 材質・添加剤の検討【H28-H29】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-1
3.2.2 材質・配置の検討【H28-H29】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-2
3.3 高速炉での核変換ターゲット集合体の配置、交換法(再委託先:東北大学)・・・・ 3.3	-1
3.3.1 配置、交換法の検討【H29-R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3	-1
3.4 LLFP 炉心ターゲットを含む高速炉の炉心特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-1
3.4.1 炉心特性(再委託先:東京都市大学)【H28-R1】・・・・・・・・・・・・3.4	-1
3.4.2 熱特性(東京工業大学)【H29-R1】 · · · · · · · · · · · · · · · · · · ·	26
3.4.3 安全性(再委託先:東京都市大学)【H29-R1】 · · · · · · · · · · · · · · · 3.4-	36
3.5 核変換ターゲット集合体の構造設計(再委託先:東北大学)・・・・・・・・・・ 3.5	-1
3.5.1 集合体構造設計【H30-R1】	-1
3.6 大型高速炉での適用性評価(再委託先:東北大学)・・・・・・・・・・・・・・・・・ 3.6	-1
3.6.1 大型炉への適用解析【H30-R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-1
3.7 核変換ターゲット構成材料の物性(再委託先:原子力機構)・・・・・・・・・・・・・・3.7	-1
3.7.1 物性調査・適用性検討【H28】 · · · · · · · · · · · · · · · · · · ·	-1
3.7.2 高温安定性試験【H29】 ······3.7	'-1
3.7.3 共存性試験【H30】 ····· 3.7	′–1
3.7.4 強度特性への影響試験【R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	'-1
3.8 核変換ターゲットの製造(再委託先:原子力機構)・・・・・・・・・・・・・・・・・・・・・・・3.8	-1
3.8.1 LLFP 製造試験【H30】 · · · · · · · · · · · · · · · · · · ·	-1
3.8.2 模擬回収 LLFP 製造試験【R1】······3.8	-1
3.9 LLFP 回収技術の検討(再委託先:原子力機構) ・・・・・・・・・・・・・・・・・・・・・ 3.9	-1
3.9.1 手法評価【H28】 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-1
3.9.2 炉内回収のロス率評価【H29】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)–1

	3. 9. 3	再処理工程からの回収手法の検証【H30】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・.3.9-	1
ť	3. 9. 4	再処理回収ロス率評価【R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.9-	2
3.1	0 照射	試験計画(再委託先:東京都市大学)・・・・・・・・・・・・・・・・・・・・・・・・・・3.10-	1
ć	3. 10. 1	照射試験計画の策定【H30-R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.10-	1
3. 1	1 社会	\$科学的意義(再委託先:東北大学)・・・・・・・・・・・・・・・・・・・・・・・・・ 3.11-	1
	3. 11. 1	調査・分析・まとめ【H28-R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3. 1	2 研究	Ζ推進 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	3. 12. 1	プロジェクトの総合推進【H28-R1】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	3. 12. 2	全体まとめ【H28-R1】 ····· 3.12-	4
4. 糸	吉言・・・	4-	1

表 3.1.3-1 TMC	法によって得られた核変換率と SF の誤差	3. 1–3
表 3.2.1-1 原型	21.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	3. 2–4
表 3.2.1-2 評個	田条件	3. 2–5
表 3.2.1-3 LLF	Pの核変換率(減速材∶YD₂(重水素化イットリウム))・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 2–5
表 3.2.1-4 LLF	Pの核変換率と SF(減速材∶YH₂(水素化イットリウム)) ・・・・・・・・・・	3. 2–5
表 3.2.1-5 各 L	LFP の装荷量と核変換量、核変換率	
(非均	均質化 1/2/3 各層 18/12/6 ピン、減速材 YD2) ・・・・・・・・・・・・・・・・	3. 2–6
表 3.2.1-6 各 L	LFP の装荷量と核変換量、核変換率(均質混合ペレット)・・・・・・・・	3. 2–6
表 3.2.1-7 減速	基材材質(YH₂)と各 LLFP の装荷量と核変換量、核変換率	
(非均	勾質化 1/2/3 各層 18/12/6 ピン) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 2–7
表 3.2.1-8 LLF	P 部ペレット高さ(93㎝ 時)と各 LLFP の装荷量と核変換量、核変換率	
(非均	勾質化 1/2/3 各層 18/12/6 ピン) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 2–7
表 3.2.1-9 LLF	P 部ペレット高さ(183㎝ 時)と各 LLFP の装荷量と核変換量、核変換率	
(非均	勾質化 1/2/3 各層 18/12/6 ピン) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 2–7
表 3.3.1-1 高核	亥変特性を持つ核変換ターゲット集合体の配置、交換法・・・・・・・・・・	3. 3–12
表 3.3.1-2 核雾	を換特性の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–12
表 3.3.1-3 減速	恵材材質と LLFP 各元素のピンの本数 · · · · · · · · · · · · · · · · · · ·	3. 3–12
表 3.3.1-4 核雾	を換特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–13
表 3.3.1-5 主要	要核特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–13
表 3.3.1-6 ボイ	イド反応度とドップラー係数	3. 3–13
表 3.3.1-7 3 基	与炉心システムの核種毎、炉心毎の核変換率と SF(案1)・・・・・・・・・	3. 3–14
表 3.3.1-8 炉心	ンBでのI+YHピンのIの比率とI、Tcの核変換率の関係・・・・・・・・・	3. 3–14
表 3.3.1-9 3 基	与炉心システムの核種毎、炉心毎の核変換率と SF(案2)・・・・・・・・・	3. 3–15
表 3.3.1-10 135	Cs 同位体の装荷量の増加方策とその SF の増加効果・・・・・・・・・・・・・	3. 3–15
表 3.3.1-11 Cs	と Zr の SF の特性 · · · · · · · · · · · · · · · · · · ·	3. 3–16
表 3.3.1-12 第	1層に Cs100%とした場合と Cs70%YD30%の場合の炉心 A の	
SF	と変換率	3.3–16
表 3.3.1-13 第	1 層に Cs100%とした場合と Cs70%YD30%の場合の炉心 A の SF と変換率、	
炉	心高さ 93cm 部分、各層の数値	3. 3–16
表 3.3.1-14 3 美	基炉心システムの核種毎、炉心毎の核変換率と SF · · · · · · · · · · · ·	3. 3–17
表 3.3.1-15 3 3	基炉心システムの炉心毎の増殖比、実行増倍率 ・・・・・・・・・・・・・・・・	3. 3–17
表 3.3.1-16 3 3	基炉心システムの炉心 B の隣接外側燃料の集合体内ピーキング ・・・・・・	3. 3–17
表 3.3.1-17 3 3	基炉心システムの炉心部軸方向平均中性子束分布 ・・・・・・・・・・・・・	3. 3–18
表 3.3.1-18 4 4	核種 2 基炉心システムの核変換率と SF · · · · · · · · · · · · · · · · · ·	3. 3–18
表 3.3.1-19 増	殖比	3. 3–18
表 3.3.1-20 LL	FP3 核種の核変換システムでの核変換率と SF · · · · · · · · · · · · · · · · ·	3. 3–19
表 3.3.1-21 LL	FP3 核種の核変換システムでの核変換率と SF (Se 集合体 6 体) ・・・・・・	3. 3–19

表 3. 4. 1-1	LLFP ターゲット装荷炉心の 2 次元 R-Z 燃焼計算条件 · · · · · · · · · · · · · · · · · · ·	3. 4–7
表 3. 4. 1-2	LLFP ターゲット装荷炉心の 2 次元 R-Z 燃焼計算結果 · · · · · · · · · · · · · · · · · · ·	3. 4–8
表 3. 4. 1-3	LLFP ターゲット装荷炉心の核特性検討条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–8
表 3. 4. 1-4	LLFP ターゲット装荷炉心のナトリウムボイド反応度および	
	ドップラー係数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–9
表 3.4.1-5 L	LLFP ターゲット装荷炉心(炉心 B)の最大線出力(BOEC)・・・・・・・・・・・	3. 4–9
表 3.4.1-6 L	LLFP ターゲット装荷炉心(炉心 B)の制御棒価値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8. 4–10
表 3.4.1-7 L	LLFP ターゲット装荷炉心(炉心 B)の炉停止余裕・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8. 4–10
表 3.4.1-8日	最大線出力低減策の得失整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3	8. 4–11
表 3.4.1-9	LLFP ターゲット装荷炉心(炉心 B)の 3 次元 TRI-Z 拡散計算結果	
	燃料ペレット製造密度向上の感度解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8. 4–12
表 3. 4. 1-10	線出力と燃料中心温度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3	8. 4–12
付表 3. 4. 1-1	1 70 群炉定数ライブラリと 900 群縮約 79 群のエネルギー構造 ・・・・・・・・ 3	8. 4–19
付表 3.4.1-2	2 燃料集合体内 LLFP 装荷炉心(炉心 D)検討条件 ・・・・・・・・・・・・・・ 3	8. 4–22
付表 3.4.1-	·3 LLFP ターゲット装荷炉心の 2 次元 R−Z 拡散燃焼計算および摂動計算結果 · 3	8. 4–23
表 3. 4. 3-1	もんじゅの許認可で想定した主に炉心に関する事象・・・・・・・・・・・・・ 3	8. 4–46
表 3. 4. 3-2	LLFP ターゲット集合体を起因とした安全性に影響する事象	8. 4–47
表 3. 4. 3-3	主要な高速炉における燃料の破損(主として運転用燃料)・・・・・・・・ 3	8. 4–48
表 3. 4. 3-4	LLFP ターゲット燃料ピン内の重水素、水素量 ····································	8. 4–49
表 3.4.3-5	LLFP ターゲットピン破損(減速材による流路閉塞)の解析条件 ········3	8. 4–50
表 3. 4. 3-6	LLFP ターゲットピン破損(減速材による流路閉塞)の解析結果 ········3	8. 4–50
表 3. 4. 3-7	LLFP ターゲットピン破損(炉心部への水素、重水素の混入)の解析条件 ··· 3	8. 4–51
表 3. 4. 3-8	LLFP ターゲットピン破損(炉心部への水素、重水素の混入)の解析結果 ··· 3	8. 4–51
表 3. 5. 1-1	LLFP 集合体出力と冷却材必要流量 · · · · · · · · · · · · · · · · · · ·	3. 5–4
表 3.5.1-2	LLFP 集合体出力および隣接集合体のピーキング ・・・・・・・・・・・・・・・・・・・・・	3. 5–4
表 3.5.1-3	Ⅰ装荷ピンの健全性評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 5–5
表 3. 5. 1-4	装荷 LLFP の形態(6核種 3 炉心システム) ・・・・・・・・・・・・・・・・・・・・・・・	3. 5–5
表 3. 6. 1-1	大型炉の炉心基本仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.6–3
表 3.6.1-2	大型炉の燃料仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.6–3
表 3.6.1-3	大型炉の体積比(%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.6–3
表 3. 6. 1-4	LLFP 集合体ピン仕様 · · · · · · · · · · · · · · · · · · ·	3.6-4
表 3.6.1-5	核変換率、SF、増殖比⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	3. 6–4
表 3.6.1-6	反応度特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 6–4
表 3. 7. 4-1	LLFP の炉内装荷形態と供試体仕様 · · · · · · · · · · · · · · · · · · ·	3. 7–4
表 3. 7. 4-2	高温保持試験条件	3. 7–4
表 3. 7. 4-3	SUS316 鋼の高温保持試験前後の重量変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 7–5
表 3. 7. 4-4	引張試験条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 7–5
表 3. 7. 4-5	SUS316 鋼の引張試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 7–6
表 3.8.2-1	Ag 系吸着剤からの回収条件 · · · · · · · · · · · · · · · · · · ·	3.8-6

表 3. 8. 2-2	Ⅰの回収結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.8-6
表 3. 8. 2-3	IH 生成試験条件 · · · · · · · · · · · · · · · · · · ·	3.8-6
表 3. 8. 2-4	吸着剤からのIの回収結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.8-6
表 3.8.2-5	NaI からの IH 生成条件 ······	3.8–7
表 3. 8. 2-6	NaI からの IH 生成結果 · · · · · · · · · · · · · · · · · · ·	3.8–7
表 3. 8. 2-7	IHからの Bal₂の製造手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.8–7
表 3. 8. 2-8	IH 回収液および Bal₂製造時硝酸溶液中の不純物 · · · · · · · · · · · · · · · · · · ·	3.8–7
表 3.8.2-9	模擬廃液組成	3.8–8
表 3.8.2-10	回収物の成分分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 8-8
表 3. 8. 2-11	ろ液、析出物の Cs 分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.8–9
表 3. 8. 2-12	CsNO3 含有硝酸溶液による Cs2CO3 製造効率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.8–9
表 3. 8. 2-13	LLFP と中性子減速材の混合比 · · · · · · · · · · · · · · · · · · ·	3.8–9
表 3. 8. 2-14	粒径調節による Bal2と YD2の粒子数比 ······3	8. 8–10
表 3. 8. 2-15	Yの重水素化条件・・・・・3	8. 8–10
表 3. 8. 2-16	不活性ガス融解-熱伝導度法による D₂分析結果 ····································	8. 8–10
表 3. 9. 4-1	Re に対する抽出および逆抽出条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.9–7
表 3. 9. 4-2	Re 抽出における模擬廃液と逆抽出液の分析結果 · · · · · · · · · · · · · · · · · · ·	3.9–7
表 3. 9. 4-3	Re 抽出における抽出率および逆抽出率 · · · · · · · · · · · · · · · · · · ·	3. 9–8
表 3. 9. 4-4	Pdに対する抽出および逆抽出条件 ·····	3. 9–8
表 3. 9. 4-5	Pd 抽出における模擬廃液と逆抽出液の分析結果 · · · · · · · · · · · · · · · · · · ·	3.9–9
表 3. 9. 4-6	Pd 抽出における抽出率および逆抽出率 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.9–9
表 3. 9. 4-7	高速炉における LLFP 生成量······3	8. 9–10
表 3. 10. 1-1	常陽 Mark-IV 炉心および照射ターゲットの主要パラメータ ・・・・・・・・・ 3	8. 10–6
表 3. 11. 4-1	平成 30 年度の段階で導いている「コミュニケーション指針」 ・・・・・・ 3	8. 11–3
表 3.11.5-1	令和元年度のインタビューを通じて得られた知見と「指針」の関係 3	8. 11–4

図一覧

図 2.1-1 全	:期間を通じた研究実施計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2. 1–1
図 2.1-2 合	↑和元年度研究実施計画図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2. 1–2
図 3.1.2-1	⁹⁹ Tc の中性子捕獲断面積の相対標準偏差と相関行列	3. 1–2
図 3.1.3-1	T6 と TMC 法の処理流れ ····································	3. 1-4
🗵 3. 2. 1-1	原型炉炉心径ブランケット領域、遮へい体領域でのイットリウム水素化物	
	減速材による LLFP 核変換モデル(均質混合ピンの場合) · · · · · · · · · · ·	3. 2-8
🗵 3. 2. 1-2	原型炉炉心径ブランケット領域でのイットリウム水素化物減速材による	
	LLFP 核変換モデル(減速材/LLFP 非均質化時詳細) ・・・・・・・・・・・・・・	3. 2–9
図 3.3.1-1	原型炉サイズの径方向ブランケット領域での MVP 計算モデル ・・・・・・・・	3. 3–20
図 3.3.1-2	Cs 核変換ターゲット集合体の装荷層と ¹³⁵℃s の SF の変化・・・・・・・・・・・・・	3. 3–20
🗵 3. 3. 1-3	原型炉サイズの径方向ブランケット領域での SCALE/XSDRN 計算モデル	3. 3–22
図 3.3.1-4	減速材体積比と核変換率(%/年)、サポートファクタ(SF)との関係(⁷⁹ Se)··	3. 3–23
🗵 3. 3. 1-5	減速材体積比と核変換率(%/年)、出力ピーキング(PK)との関係(⁷⁹ Se)····	3. 3–23
図 3.3.1-6	減速材体積比と核変換率(%/年)、サポートファクタ(SF)との関係(⁹⁹ Tc)··	3. 3–24
図 3.3.1-7	減速材体積比と核変換率(%/年)、出力ピーキング(PK)との関係(⁹⁹ Tc)····	3. 3–24
🗵 3. 3. 1-8	減速材体積比と核変換率(%/年)、サポートファクタ(SF)との関係(¹⁰⁷ Pd)・	3. 3–25
🗵 3. 3. 1-9	減速材体積比と核変換率(%/年)、出力ピーキング(PK)との関係(¹⁰⁷ Pd)····	3. 3–25
図 3.3.1-10	減速材体積比と核変換率(%/年)、サポートファクタ(SF)との関係(¹²⁹ I)・	3. 3–26
図 3.3.1-11	減速材体積比と核変換率(%/年)、出力ピーキング(PK)との関係(¹²⁹ I)・・・	3. 3–26
図 3.3.1-12	減速材中の日比率と核変換率(%/年)、	
	出カピーキング(PK)との関係(⁹⁹ Tc)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–27
図 3.3.1-13	減速材中の日比率と核変換率(%/年)、	
	サポートファクタ (SF) との関係 (⁹⁹ Tc) · · · · · · · · · · · · · · · · · · ·	3. 3–27
図 3.3.1-14	Tc ピンの体積比率と核変換率(%/年)、	
	出カピーキング(PK)との関係(¹²⁹ I) ·····	3. 3–28
図 3.3.1-15	Tc ピンの体積比率と核変換率(%/年)、	
	サポートファクタ (SF) との関係 (¹²⁹ I) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–28
図 3.3.1-16	減速材体積比と核変換率(%/年)、	
	サポートファクタ (SF) との関係 (⁹³ Zr) · · · · · · · · · · · · · · · · · · ·	3. 3–29
図 3.3.1-17	減速材(YD2)体積比と核変換率(%/年)、	
	サポートファクタ (SF) との関係 (⁹³ Zr) · · · · · · · · · · · · · · · · · · ·	3. 3–29
図 3.3.1-18	減速材(YH2)体積比と核変換率(%/年)、	
	サポートファクタ (SF) との関係 (⁹³ Zr) · · · · · · · · · · · · · · · · · · ·	3. 3–29
図 3.3.1-19	減速材体積比と核変換率(%/年)、	
	サポートファクタ(SF)との関係(¹³⁵ Cs) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–30
図 3.3.1-20	減速材体積比と核変換率(%/年)、	
	サポートファクタ(SF)との関係(¹³⁵ Cs) · · · · · · · · · · · · · · · · · · ·	3.3–30

図 3.3.1-21	ターゲット集合体のターゲットピン配置・・・・・・・・・・・・・・・・・・・・・・・	3. 3–31
図 3.3.1-22	外側炉心第二層の燃料集合体のピン毎のピーキング係数・・・・・・・・・・	3. 3–32
図 3.3.1-23	LLFP 配置 ···································	3. 3–33
図 3.3.1-24	各領域の LLFP 装荷集合体・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–34
図 3.3.1-25	径方向出力分布の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–35
図 3.3.1-26	高速炉核変換システム 案1・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–36
図 3.3.1-27	Bal2ピンの Bal2比率と核変換率および SF の関係・・・・・・・・・・・・・・・・・	3. 3–37
図 3.3.1-28	高速炉核変換システム LLFP 配置 案 2 · · · · · · · · · · · · · · · · · ·	3. 3–38
図 3.3.1-29	20 年冷却と 100 年冷却の Cs 同位体の比率 ・・・・・・・・・・・・・・・・・・・・・・	3. 3–39
図 3.3.1-30	RB 第1層の減速材装荷の有無による Cs 装荷各層での核変換率、SF、	
I	中性子束の挙動 · · · · · · · · · · · · · · · · · · ·	3. 3–40
図 3.3.1-31	下部軸ブランケット体積比と Zr の FS の関係	3. 3–41
図 3.3.1-32	下部ブランケットへの Zr の装荷方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–41
図 3.3.1-33	高速炉核変換システム LLFP 配置 ·····	3. 3–42
図 3.3.1-34	炉心 A、B、C の炉心部軸方向平均中性子束分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–43
図 3.3.1-35	LLFP4 核種を装荷した 2 つの炉心を組み合わせた核変換システム ・・・・・・	3. 3–44
図 3.3.1-36	地層処分の被ばく量の核種の寄与・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 3–45
図 3.3.1-37	LLFP3 核種を装荷した 2 つの炉心を組み合わせた核変換システム ・・・・・・	3. 3–46
図 3.3.1-38	LLFP3 核種を装荷した 2 つの炉心を組み合わせた核変換システム	
	(⁷⁹ Se 集合体本数増加) · · · · · · · · · · · · · · · · · · ·	3. 3–44
図 3.4.1-1 L	LFP ターゲット装荷炉心の構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–13
図 3.4.1-2 炊	燃焼計算のモデル(炉心 B) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–13
図 3.4.1-3 2	2 次元 R−Z 体系で計算した BOEC における燃料領域の出力分布(炉心 B)	3. 4–14
図 3.4.1-4 炊	戸心 B の出カピーキング係数(3 次元 TRI-Z 拡散計算結果)(BOEC) ·····	3. 4–15
図 3.4.1-5 紫	戸心 B のピーク集合体内の最大線出力(3 次元 TRI-Z 拡散計算結果)	
	(想定サイクル数:13) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–16
図 3.4.1-6 #	前御棒位置······	3. 4–17
図 3.4.1-7 5	定格時の最大線出力と過出力時の燃料最高温度の関係	
	(中実燃料ペレット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–18
図 3.4.1-8 5	定格時の最大線出力と過出力時の燃料最高温度の関係	
	(中空燃料ペレット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–18
付図 3.4.1-1	燃料集合体中に配置した LLFP ピンの位置 (炉心 D) ······	3. 4–24
付図 3.4.1-2	燃料集合体の実効断面積を計算する際の多重リングモデル(炉心 D) ・・・・	3. 4–24
付図 3.4.1-3	燃焼計算における 2 次元 R−Z 炉心モデル(炉心 D) ・・・・・・・・・・・・・・	3. 4–25
図 3.4.2-1	高速炉核変換システム B · · · · · · · · · · · · · · · · · ·	3. 4–27
図 3. 4. 2-2	RELAP5-30による解析対象高速炉核変換炉心の解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–30
図 3.4.2-3	「もんじゅ」タービントリップ試験時の炉心出口温度と解析結果	3. 4–30
図 3.4.2-4	燃料部のモデルと LLFP 集合体のモデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–31
図 3.4.2-5	第 9 リングの LLFP 集合体出力分布 · · · · · · · · · · · · · · · · · · ·	3. 4–31

図 3.4.2-6	炉心全体の集合体出力の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–33
図 3.4.2-7	炉心全体の集合体流量比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–33
図 3.4.2-8	炉心全体のピーキングを考慮した被覆管温度評価・・・・・・・・・・・・・	3. 4–34
図 3.4.2-9	出力誤差 1.02 を考慮した YH₂-Ba I₂ ピンの中心温度・・・・・・・・・・・・・・・・	3. 4–34
図 3.4.3-1	LLFP ターゲットピン移動の解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–52
図 3.4.3-2	LLFP ターゲットピン移動による燃料ピンのピーキング係数解析結果 ······	3. 4–52
図 3.4.3-3	LLFP ターゲットピン破損時の減速材の挙動・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–53
図 3.4.3-4	LLFP ターゲットピンの破損(減速材による流路閉塞)の解析モデル	3. 4–54
図 3.4.3-5	LLFP ターゲットピンの破損(減速材による流路閉塞)の解析結果 ・・・・・・・	3. 4–55
図 3.4.3-6	もんじゅの破損燃料検出系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–56
図 3.4.3-7	もんじゅのタギング法破損燃料検出装置の概要・・・・・・・・・・・・・・・	3. 4–56
図 3.4.3-8	レーザー共鳴イオン化質量分析法(RIMS)の概要・・・・・・・・・・・・・	3. 4–57
図 3.4.3-9	もんじゅへの RIMS の導入方法(提案)・・・・・・・・・・・・・・・・・・・・・・・	3. 4–57
図 3.4.3-10	希釈ガスを用いた RIMS の検出性能の確認・・・・・・・・・・・・・・・・・・・・・・・・・	3. 4–58
図 3.4.3-11	常陽の Na シッピング法破損燃料検出装置 · · · · · · · · · · · · · · · · · · ·	3. 4–58
図 3.5.1-1	(I+YH2、Tc)集合体内発熱分布·····	3. 5–6
図 3.5.1-2	YH90I10の径方向出力分布 ·····	3. 5–6
図 3.5.1-3	ペレット中心温度のヨウ素核変換率の依存性・・・・・・・・・・・・・・・・・・・・・・・	3. 5–7
図 3.5.1-4	ヨウ素核変換率と CDF、プレナム圧カ 初期加圧を行わない場合	
	(初期圧 力~3 kg/cm²)CDF=0.5 核変換率 24.0% · · · · · · · · · · · · · · · · · · ·	3. 5–7
図 3.5.1-5	ヨウ素核変換率と CDF、プレナム圧力 (初期加圧 20kg/cm ²)	
	CDF=0.5 核変換率 21.5%·····	3. 5–8
図 3.5.1-6	ヨウ素核変換率と CDF、プレナム圧カ (初期加圧 30kg/cm ²)	
	CDF=0.5 核変換率 20.0%······	3. 5–8
図 3.5.1-7	炉心燃料集合体(炉心 A、B、C 共通) · · · · · · · · · · · · · · · · · · ·	3. 5–9
図 3. 5. 1-8	炉心 A 径ブランケット第 1 層装荷用 Cs 集合体 ・・・・・・・・・・・・・・・・・・・・	3. 5–10
図 3.5.1-9	Cs 装荷集合体 (炉心 A、炉心 B、炉心 C 共通	
	径ブランケット第2層~遮蔽体第4層) ・・・・・・・・・・・・・・・・・・・・・・	3. 5–11
図 3. 5. 1-10	炉心 B 径ブランケット第1層装荷(I+YH2)、Tc 装荷集合体 ・・・・・・・・・・	3. 5–12
図 3.5.1-11	炉心 C 径ブランケット第1層装荷 Pd+YD2 装荷集合体 ・・・・・・・・・・・・	3. 5–13
図 3.5.1-12	炉心 C 径ブランケット第1層装荷 Se+YD2 装荷集合体 ・・・・・・・・・・・・	3. 5–14
図 3.6.1-1	大型炉心の炉心配置図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.6–5
図 3.6.1-2	ターゲット集合体の構造図・・・・・	3.6-6
図 3.6.1-3	R−Z 体系計算モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 6-7
図 3.6.1-4	大型炉と高速炉(原型炉)との核変換率の比較・・・・・・・・・・・・・・・・・・	3. 6-8
図 3.6.1-5	大型炉と高速炉(原型炉)とのサポートファクターの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 6-8
図 3.6.1-6	大型炉と高速炉(原型炉)との増殖比の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3.6-9
図 3. 7. 4-1	共存性試験装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 7–7
図 3. 7. 4-2	共存性試験装置外観	3. 7–7

🗵 3. 7. 4-3	SUS316 鋼試験片の高温保持試験前後の外観 ······ 3.7-8
図 3.7.4-4	SUS316 鋼試験片の高温保持試験前後の SEM 像 ···································
図 3.7.4-5	SUS316 鋼試験片の元素分析結果(受入材試験片の表面) ···········3.7-10
図 3.7.4-6	SUS316 鋼試験片の元素分析結果(ZnSe 試験片の表面) ··········· 3.7-10
図 3.7.4-7	SUS316 鋼試験片の元素分析結果(Zr 試験片の表面) ·················3.7-11
図 3. 7. 4-8	SUS316 鋼試験片の元素分析結果(Pd 試験片の表面) ·······················3.7-11
図 3.7.4-9	SUS316 鋼試験片の元素分析結果(Bal2試験片の表面および断面) ······ 3.7-12
図 3.7.4-10	SUS316 鋼試験片の元素分析結果(Cs₂CO₃試験片の表面および断面) ····· 3.7-13
図 3.8.2-1	IH 生成の試験体系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.8-11
図 3.8.2-2	試験開始時から XRD 供試体までの試料外観
図 3.8.2-3	蒸発乾固体の XRD 結果······ 3.8-12
図 3.8.2-4	粉末状 YD₂の XRD 結果 · · · · · · · · · · · · · · · · · ·
図 3.8.2-5	細孔付ペレット状 YD2の XRD 結果 ······ 3.8-13
図 3.8.2-6	40BaI2-60YD2ターゲット(粉末混合焼結型)···················3.8-13
図 3.8.2-7	70Cs ₂ CO ₃ -30YD ₂ ターゲット(粉末混合焼結型)············3.8-14
図 3.8.2-8	Cs ₂ CO ₃ ターゲット · · · · · · · · · · · · · · · · · · ·
図 3.8.2-9	10BaI2-90YD2ターゲット(混合複合体型) ····································
図 3.8.2-10	10Cs2C03-90YD2ターゲット(混合複合体型)・・・・・・・・・・・・・・・・・・・3.8-15
図 3.9.4-1	MIDOAの抽出特性 · · · · · · · · · · · · · · · · · · ·
図 3.9.4-2	Re 抽出操作時の外観 ······ 3.9-11
図 3.9.4-3	MIDOA による抽出後の分離相 ······ 3.9-12
図 3.9.4-4	MIDOA 抽出における逆抽出液 ······ 3.9-12
図 3.9.4-5	TDGAの抽出特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.9-13
図 3.9.4-6	Pd 抽出操作時の外観 ······ 3.9-13
図 3.9.4-7	TDGAによる抽出後の分離相 ······ 3.9-14
図 3.9.4-8	TDGA 抽出における逆抽出液 ······ 3.9-14
図 3.9.4-9	Zr、Tc、I および Cs のマテリアルバランス ······ 3.9-15
図 3.10.1-1	Csの主な燃焼・崩壊チェーン ······ 3.10-7
図 3.10.1-2	常陽の炉心断面と照射集合体装荷位置・・・・・・・・・・・・・・・・・・・・・・・3.10-7
図 3.10.1-3	照射集合体と常陽への炉内装荷位置・・・・・・・・・・・・・・・・・・・・・・・3.10-8
図 3.10.1-4	照射集合体装荷位置(Position-1) ····································
図 3.10.1-5	照射集合体装荷位置(Position-2) ····································
図 3.10.1-6	FISPACT-II による燃焼計算の流れ ······ 3.10-9
図 3.10.1-7	Position-1 に装荷した照射集合体の燃焼領域 · · · · · · · · · · · · · · · · · · 3.10-10
図 3. 10. 1-8	Position-1 における Cs 同位体の照射日数依存性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 3.10.1-9	Position-1 における Ba 同位体の照射日数依存性 ・・・・・・・・・・・・・・・・・・・・・・・3.10-11
図 3.10.1-10	〕 ¹⁵⁵ Gd および ¹⁵⁷ Gd の原子数密度の照射日数依存性・・・・・・・・・・・・・・・・3. 10−12
図 3. 10. 1-11	照射集合体に隣接する燃料棒の径方向出カピーキング係数の
	照射日数依存性 · · · · · · · · · · · · · · · · · · ·

図 3. 10. 1-12	照射集合体に隣接する燃料棒の軸方向出力ピーキング係数3.10-13
図 3. 10. 1-13	ターゲット(YH₂+Cs₂CO₃)および減速材(YH₂)の中性子スペクトル ······3.10-13
図 3. 10. 1-14	ガドリニア棒(Group-1)の中性子スペクトル・・・・・・・・・・・・・・・・・・・・・・・3.10-13
図 3. 10. 1-15	Position-2 に装荷した照射集合体の燃焼領域 ·······················3.10-14
図 3. 10. 1-16	Position-2 における Cs 同位体の照射日数依存性 ············3.10-14
図 3. 10. 1-17	Position-2 における Ba 同位体の照射日数依存性 ························3.10-15

略語一覧	
BCR	: Backup Control Rod (後備炉停止系・後備炉停止棒)
BOEC	:Beginning Of Equilibrium Cycle (平衡サイクル初期)
CCR	: Coarse Control Rod (主炉停止系・粗調整棒)
CDF	:Cumulative Damage Fraction(累積損傷和)
CG	:Cover Gas (カバーガス)
ENDF	: Evaluated NUclear Data File
EOEC	: End Of Equilibrium Cycle (平衡サイクル末期)
EXFOR	: Experimental Nuclear Reaction Data
FCR	:Fine Control Rod(主炉停止系・微調整棒)
FFD	:Failed Fuel Detection(破損燃料検出装置)
FFDL	:Failed Fuel Detection and Location(破損燃料位置検出装置)
FP	:Fission Product(核分裂生成物)
ICP-MS	: Inductively Coupled Plasma-Mass Spectrometry (誘導結合プラズマ質量分析)
JEFF	: Joint Evaluated Fission and Fusion Nuclear Data Library
JENDL	: Japanese Evaluated Nuclear Data Library
LLFP	:Long-lived fission products(長寿命核分裂生成物)
MA	:Minor Actinide (アクチノイドに属する超ウラン元素のうちプルトニウムを除いた
	もの)
MVP	:Monte carlo code for Vector Processors(連続エネルギー法に基づく汎用モンテカ
	ルロコード)
PGM	:Platinum Group Metals(白金族元素)
PIE	:Post irradiation examination(照射後試験)
RIMS	: Resonance Ionization Mass Spectrometry (レーザー共鳴イオン化質量分析法)
SD	: Smear Density (スミア密度)
SF	: Support factor (サポートファクター)
TDS	: Thermal Desorption Spectroscopy(昇温脱離ガス分析)
XRD	:X-ray Diffraction(エックス線回折)

概略

高速炉を活用する革新的な核変換システムの概念を構築し、従来に比べて飛躍的に高い効率を 有するLLFP核変換システムを開発する。そのために有害度の高い全てのLLFPに対し、それらを含 む新規の減速材入りターゲット要素を開発し、それを用いるシステムの核変換率、炉心核熱特性、 安全性の評価、ターゲットの物性測定、製造技術、LLFP回収技術、核データの高精度評価手法等 の要素技術開発を遂行し、全体システムの最適化、高速炉での照射試験計画策定を行う。また、 実用化段階の大型高速炉に対して、本LLFP核変換システムの適用性を評価する。

このうち、東京工業大学ではプロジェクトの総合的推進およびLLFP核分裂収率・中性子捕獲断 面積データの評価、東北大学では核変換ターゲットの材質、構造、配置の解析評価、高速炉での 核変換ターゲット集合体の配置、交換法の検討、社会科学的意義の検討、東京都市大学ではLLFP ターゲットを含む高速炉の炉心特性の解析と照射試験の検討、原子力機構では核変換ターゲット 構成材料の物性、ターゲット製造、回収技術の開発を実施する。

令和元年度の成果を以下に示す。

(1) LLFP 核データの収集・評価では、LLFP 核種断面積の共分散ファイルの作成および核変換 率の誤差推定を行った。LLFP の6 核種¹²⁹I、⁹⁹Tc、⁷⁹Se、¹⁰⁷Pd、¹³⁵Cs、⁹³Zr の共分散ファイルを作 成し、本業務で構築した Total Monte Carlo 法を用いて3つの炉心を組み合わせた6 核種核変換 システムにおける中性子捕獲断面積誤差に起因する核変換率の誤差を求め、サポートファクター (SF)の誤差を推定した。

(2) 核変換ターゲットの材質、構造、配置の検討(再委託先:東北大学)では、LLFP 核種のタ ーゲット集合体(減速材含む)を、高速炉のブランケット領域および遮蔽体領域に装荷する場合 の配置、交換法を検討し、炉心核特性解析を実施し、核変換特性、サポートファクター等との関 係を明らかにした。これにより、優れた核変換特性を持つ核変換ターゲット集合体の配置、交換 法をまとめた。

LLFP の元素分離での再処理の適合性の点で I、Tc、Se、Pd を別に扱うことを考えて3つの炉心 A, B, C を組み合わせた6核種核変換システムを検討した。6核種全て SF>3 となるシステムを構築 でき、かつ¹²⁹I、⁹⁹Tc、⁷⁹Se、¹⁰⁷Pd は 3%/年程度の高い核変換率とすることができた。

6 核種の3基炉心から ¹³⁵Cs と ⁹³Zr を除く4 核種とすると SF>3 でかつ増殖比1を確保する持続 性のある高速炉核変換システムを構築することができた。

IとSeは地層処分での被ばくの支配核種であることを鑑み、Pdを除くI、Tc、Seの3核種に 対し1 炉心で3核種それぞれSF>3となる炉心を設定した。本炉心にブランケット有炉心と組み 合わせ2基組で増殖比を1とできる持続性のある高速炉核変換システムを構築できた。

(3) LLFP ターゲットを含む高速炉の炉心特性に関し、①炉心特性(再委託先:東京都市大学) では、LLFP 核変換の最適化炉心について炉心特性解析評価を行った。LLFP6 核種の核変換を目的 とする 3 種類の炉心 A, B, C の炉心特性を評価した。その結果、燃焼反応度と最大線出力は炉心 B が最も高くなったため、代表として炉心 B を対象に炉停止余裕と出力分布、出力ピーキングの評 価を行った。炉心 B はもんじゅ炉心と同等の炉停止余裕を有することを確認したが、ブランケッ トが削除されたため最大線出力は制限値 360 W/cm を超過した。このため、燃料溶融を防止する観 点から対策をまとめ、実施が現実的と考えられる燃料ペレットの高密度化と中空化の効果につい て検討した。その結果、中空径1mm、燃料ペレットの製造密度を 90%TD とすることで過出力状態 を考慮しても燃料溶融を防止できる見込みが得られた。

また②熱特性では、LLFP 核変換炉体系における冷却材流量配分を決定し LLFP ターゲットの熱 的健全性を評価した。LLFP 集合体の配置が適切になったことによって、炉心入口流動抵抗を変更 することなくブランケットを LLFP 集合体で置き換えて照射しても駆動炉心の健全性には問題を 生じないことが明確になった。一方、第9リングに装荷される YH₂-BaI₂のピンは、ペレット中心 温度がギャップ部のガス組成に左右されるが、初期に 2MPa で封入した He (100 モル%) が、照 射で発生した Xe ガスで薄まって約 20%に減少するまでは、温度制限値以内で照射できることが 分った。このペレットに最大 1.8 mmの中心孔を設けた場合には、より大きな余裕をもって照射が 行える結果になった。

③安全性(再委託先:東京都市大学)では、最適化炉心についてターゲット集合体ピンの破損 を想定し安全性の評価を行った。また、ターゲットピンの破損検出方法概念を検討、提案した。 最適化炉心を対象に安全性に影響を与えると考えられる3項目(LLFP ピン内のペレット移動によ るサーマルスパイク、減速材による流路閉塞、炉心部への水素・重水素混入)について評価を実施 した結果、いずれの事象も燃料ピンの出力は過出力係数(116%)以下であり燃料ピンの健全性 は維持されることを確認した。また、もんじゅの破損燃料検出系と常陽に導入が検討されている RIMS を調査し、LLFP ターゲットピンの破損検出方法について検討した。その結果、タグガスの充 填範囲を LLFP ターゲット集合体まで拡張し、CG 法 FFD とタギング法 FFDL または RIMS の組み合 わせを用いることにより、LLFP ターゲットピンの破損を検知できる見通しが得られた。

(4) 核変換ターゲット集合体の構造設計(再委託先:東北大学)では、(2)で検討した結果 を基にして、LLFP 核種のピン構成、集合体構造の最適化を行った。また、LLFP 核種を装荷した ピンの温度評価、ピン圧力評価を行い、健全性を確認した。それぞれの LLFP 元素をいれたペレ ットを装荷した集合体について、構造はブランケット燃料と同一とするが、複数の炉心を組み合 わせた核変換システムで燃料集合体下部ブランケット部と Cs を装荷した集合体は Zr 装荷量を増 やすために太径ピンに形状を調整した。また、LLFP 核種を装荷したピンの中でも BaI2 ピンでは Xe の発生により内圧が発生し、さらにギャップコンダクタンスの低下により温度が上昇し発熱も 大きいため温度、内圧、CDF の評価を行った。その結果、初期 He 封入圧を大きくして Xe による ギャップコンダクタンス低下を緩和することで3年の燃焼では燃料温度は制限値以下にすること ができた。また内圧は3年で 100kg/cm² 以下であり、CDF も制限目安を十分下回ることから健全 性を確認した。

(5) 大型高速炉での適用性評価(再委託先:東北大学)では、大型高速炉に対して、今まで検討してきた LLFP 変換手法を適用し、核特性、炉心特性、安全性を解析し、大型高速炉での適用 性を評価した。原型炉クラスの高速炉での評価に基づき、Tc+(BaI₂+YH₂)の LLFP 集合体を装荷し た炉心を評価した。その結果、増殖比>1、SF>1であることを確認した。安全性にかかる反応 度係数は、ボイド反応度、ドップラー係数とも LLFP を径ブランケット第1層に装荷しても殆ど 影響がないことが確認でき、安全性は LLFP 集合体を装荷しない場合と同等であると考えられる。

(6) 核変換ターゲット構成材料の物性(再委託先:原子力機構)では、SUS316 鋼と Tc を除く 5 種類の LLFP 候補化合物の共存性試験前後の状態において引張試験を実施し、LLFP 核変換ター

xi

ゲット5種類のLLFP 候補化合物のうち ZnSe、Zr、Pd と共存性試験を行った試験片には変色が認 められたものの強度特性に大きな変化は無かった。また、BaI₂、Cs₂CO₃ と共存性試験を行った試 験片では、変色とともに試験片表面の変質が認められ、一様伸びや全伸びがやや低下したが、引 張強度や0.2%耐力には大きな低下は認められなかった。これらの結果から、各 LLFP 候補化合物 が被覆管材料の強度特性に及ぼす影響は大きくないことが明らかとなった。ターゲットの候補形 態が被覆管材料の強度特性に及ぼす影響を評価した。

(7) 核変換ターゲットの製造(再委託先:原子力機構)では、ヨウ素およびセシウムについて、 再処理工程を模擬したプロセスから回収しそれぞれを用いて核変換ターゲット用の候補化合物

(BaI₂、Cs₂CO₃)を製造した。各候補化合物の構造解析と不純物分析を行い、それら候補化合物の特性を明らかにした。また、重水素化物を減速材とし非放射性の LLFP 元素からなる模擬 LLFP ターゲットを試作し、製造性を明らかにした。試作する模擬 LLFP ターゲットは平成 30 年度までに検討した粉末混合焼結型と混合複合体型の2 種類とした。

Ag 系吸着剤からの回収ヨウ素を用いた BaI2 製造からは、主に A1、Si が不純物として随伴する とともに、ヨウ化水素製作過程が BaI2の製造上で重要なポイントになることが明らかになった。 一方、模擬放射性廃液から抽出したセシウムを用いた Cs₂CO₃ 製造では、主に Ba が不純物として 随伴するが、これは Cs 抽出や Cs₂CO₃ 合成に用いた試薬に由来するものと推測された。

また、粉末状と細孔付ペレット状のイットリウムを重水素化し、BaI₂および Cs₂CO₃に対して混 合粉末焼結型と混合複合型の LLFP ターゲットが製造可能であることを確認した。重水素化イッ トリウムと BaI₂の混合粉末焼結ではそれぞれの粒径調節により従来困難であった混合比でも焼結 できる見通しが得られた。これにより、いずれの型でのターゲットについても製造に見通しが得 られた。

(8) LLFP 回収技術の検討(再委託先:原子力機構)では、先行研究や文献の調査により6種の LLFP の再処理工程からの分離回収におけるロス率を評価した。一部、模擬元素を用いた溶媒抽出 実験を実施し、ロス率を実験的に評価した。また、LLFP サイクルに関するマテリアルフローを調 査・検討し、再処理工程での分離回収、高速炉による核変換、その後のリサイクルにおけるマテ リアルバランスを評価した。

6 種の LLFP のうち、Tc、Pd、Cs については過去の群分離研究の成果から 1~2%程度のロス率 と推定された。Se、Zr、I については移行挙動や除去率、吸着率の研究成果等からロス率は 1% 程度と推測された。Tc を模擬した Re と Pd の模擬廃液からの溶媒抽出実験からは、それぞれのロ ス率は約 30%および約 10%と見積もられた。これらのロス率の改善のためには抽出条件の最適 化や抽出方法の多段化が必要となることが明らかとなった。

LLFP サイクルにおけるマテリアルバランスとして、⁹³Zr、⁹⁹Tc、¹²⁹I および ¹³⁵Cs は一定期間の 照射後のリサイクル処理により持続的なサイクルを維持できることが明らかとなった。一方、 ⁷⁹Se と ¹⁰⁷Pd は同位体が多く元素分離のリサイクル処理ができないが、一定期間炉内装荷すること で最大 90%近くまで変換できる見通しが得られた。

(9) 照射試験計画(再委託先:東京都市大学)では、核変換特性、集合体の健全性を確認する ために高速炉を用いて核変換ターゲット集合体1体を照射する照射試験計画を策定した。

日本原子力研究開発機構の高速実験炉「常陽」を用いて、天然 Cs と減速材(YH₂ または YD₂) からなるターゲット集合体1体を照射する核的検討を行うことにより、LLFP 核変換の実証性を示 すための照射集合体および照射場を構成することができた。その結果、照射により生成される LLFP 核種である¹³⁵Cs を含む Cs 同位体およびそれらの中性子吸収と崩壊により生じる Ba 同位体 の生成量を評価することができた。これらにより、照射後試験で同位体組成が測定されれば積分 実験として核変換の実証性を定量的に示すことができる。

(10) 社会科学的意義(再委託先:東北大学)では、LLFP 核変換の社会的受容性に関する説明方法、理解度調査のまとめを行った。原子力について理解のある女性オピニオンリーダー7 名を対象として、説明会を開催し、コメントを受け、それを反映した説明方法をまとめた。

(11)研究推進に関して、①プロジェクトの総合推進では、本業務全体を適切に遂行するために 再委託者との連絡を緊密に取り、さらに定期的な会合を開催することで進捗状況を把握し業務を 滞りなく進めた。定期的な会合を開催し再委託先との連絡を緊密に取り、各機関における研究の 進捗状況の把握および連携の効率化を図り、成果の出版およびプレスリリースを適宜実施し業務 を滞りなく進めた。また②全体まとめでは、平成28年度から令和元年度における成果のまとめ を行い、報告書類の作成を行った。本プロジェクトにおける研究活動を総括し、結論をまとめ成 果報告書の作成を行った。未出版の成果については引き続き論文作成を行っていくこととした。

1. はじめに

使用済み燃料の再処理により発生する廃棄物には、多くの放射性核種が含まれている。そのう ち、マイナーアクチノイド(MA)と呼ばれるいくつかのアクチノイド核種と長寿命核分裂生成物 (LLFP)は、長寿命の放射性核種であり、特にMAは、バックエンド分野の研究において放射性廃 棄物の潜在的毒性の主要因と考えられている。処分場面積の節約には、MAなどの長寿命で発熱性 を有する核種を除去することが有効であるとされている。一方、LLFPには、深地層処分後に地下 水に溶出し移行しやすい核種があるため、処分場の安全性能(遠い将来の公衆への被ばく線量) やリスク低減の観点から問題とされている。長期間にわたって被ばく線量をもたらすLLFP主要核 種として、⁹⁹Tc:21万年、¹²⁹I:1570万年、⁷⁹Se:33万年、⁹³Zr:161万年、¹⁰⁷Pd:650万年、¹³⁵Cs: 230万年の6核種の他に¹²⁶Sn:23万年が挙げられる。

将来の原子力エネルギーシステムには、安全性に優れ、放射性廃棄物による環境負荷を効果的 に低減し環境と調和する高い性能が求められる。このような放射性廃棄物の処理・処分の分野に おいてMAを効率的に除去する手法として、MAを化学的に分離し、原子炉内や加速器駆動システム を用いた核変換による低害化(分離・核変換:Partitioning and Transmutation)が検討されて きた。しかしながら、MAの核変換を行っても最終的には大部分が核分裂によりFPに変換され、最 終的にLLFPを生じる。このような観点から、MAの核変換とともにLLFPの分離・核変換も重要であ ると考える。特にLLFPは地層処分後数十万年程度経った後に地表に移動し線量を与える可能性の ある主要因であることから、地層処分が社会からの感情的反発を受ける主な原因となっている。

長寿命 LLFP の核変換については、その方策の一つとして、余剰中性子が多い高速炉を利用した核変換システムが有効であり、大幅な有害度低減が期待できる。しかし、これまでの研究における高速炉を用いた LLFP 核変換の課題としては、低い LLFP 核変換率(年間 2~3%、取出し時:約11%:ブランケット領域装荷)が挙げられている。また、⁷⁹Se,⁹³Zr,¹⁰⁷Pd,¹³⁵Cs の核変換については、ImPACT プロジェクトで検討されているが加速器が中心で、高速炉での核変換についての研究は行われていなかった。LLFP 核変換は、不確実性を伴う超長期の放射性廃棄物処分リスクを低減し、地層処分の安全性を一般社会に分かり易い形で提示すること、そして原子力の信頼性を取り戻し一層高めるため必要である。

本研究開発では、ナトリウム冷却高速炉を利用することを念頭に、中性子吸収断面積が極端に 小さいと推定されている¹²⁶Sn以外の6LLFP核種、すなわち⁹⁹Tc、¹²⁹I、⁷⁹Se、⁹³Zr、¹⁰⁷Pd、¹³⁵Csを対 象として、従来に比べて飛躍的に高い核変換効率を可能とする減速材を用いた核変換ターゲット を開発し、LLFP核データ評価、核変換特性、高速炉での核変換ターゲット集合体の交換法、高速 炉での炉心特性評価、熱特性評価、安全性評価、ターゲットの物性測定評価、製造技術開発、 LLFP回収技術開発、核変換ターゲット集合体の構造検討、照射試験計画策定、社会科学的意義の 検討等により、実現性の高い高速炉LLFP核変換システムを確立し、放射性廃棄物減容・有害度低 減に寄与すること目的とする。

2. 業務計画

2.1 全体計画

本業務の全期間を通じた研究実施計画および令和元年度研究実施計画図を図 2.1-1 および図 2.1-2 に示す。

項目	·度 平成 2 8 年度	平成29年度	平成30年度	令和元 <mark>年度</mark>
(1)LLFP核データの収集・評価	LLFP収率データの収集	LLFP収率データ評価 ◀	LLFP中性子核データ評価検討 ◆	LLFP中性子核データ評価検討
(2) 核変換ターゲットの材質,構造,配置 (東北大学	材質、添加材の検討 ◀ ● ●	材質、配置の検討	真神にでの技変換ター	
 (3) 高速炉での核変換ターゲット集合体の配置、交換法 (東北大学) 	:)	ブランケット配置検討 ◆	ゲット集合体の配置、交換	交換法検討 ◀────
(4)LLFPターゲットを含む高速炉の炉心特性 (東京都市大)				
①炉心特性	基本炉心特性解析	「 炉心特性解析評価 ◀	炉心特性解析評価	最適化炉心の炉心特性解析評価 ◀───
②熱特性(平成30年度より東工大で実施)		熱特性解析	流量配分設定	●最適化炉心の熱特性解析
③安全性			安全性解析評価	最適炉心の安全性解析評価
(5) 核変換ターゲット集合体の構造設計 (東北大学	:)		集合体構造設計評価 ◀───	集合体構造設計評価 ◆
(6)大型高速炉での適応性評価 (東北大学	.)		大型高速炉への適用解析	大型高速炉への適用解析評価
(7) 核変換ターゲット構成材料の物性	》 物性調査・適用性検	計 高温安定性試験	共存性試験	強度特性への影響試験
(原子力機構	i)		LLFP製造試験	模擬回収LLFP製造試験
(8)核変換ターゲットの製造 (原子力機構	;)		← →	*
(9) FP回収技術の検討	回収試験1(手法評価	回収試験II(炉内回収のロス率) 評価)	回収試験III(再処理工程から の回収手法の検証)	回収試験III(再処理回収 ロス率の評価)
(原子力機構	;)		昭射試験計画の空空	集合体照射計画の検討
(10)照射試験計画 (東京都市大学	:)		₩ 初 副 朝代 前 二回 の 東 上	
(11)社会科学的意義	予備調査	調査・分析	調査·分析 ◀	評価・まとめ ◀───
(東北大学	*)			
(12) 研究推進 ①プロジェクトの相互推進	プロジェクト推進のための会合 ◀────	プロジェクト推進のための会合 ◀───►	プロジェクト推進のための会合	プロジェクト推進のための会合
②全体まとめ	まとめ・評価	まとめ・評価	まとめ・評価	まとめ・評価

図 2.1-1 全期間を通じた研究実施計画

	/ = 1	× • / ·	/ _ / 1									
区分	4	5	6	7	8	9	10	11	12	1	2	3
(1) LLFP核データの収集・評価												
①LLFP中性子核データの評価検討	◀											
(2) 高速炉での核変換ターゲット集合体 の配置、交換法 (再委託先:東北大学)												
①配置、交換法の検討	-											
(3) LLFPターゲットを含む高速炉の炉心 特性												
①炉心特性(再委託先:東京都市大学	•											
②熱特性					◀							
③安全性(再委託先:東京都市大学)		-										ŀ
(4) 核変換ターゲット集合体の構造設計 (再委託先:東北大学)												
①集合体構造設計												
(5)大型高速炉での適用性評価 (再委託先:東北大学)												
①大型炉への適用解析	-											ł
(6) 核変換ターゲット構成材料の物性 (再委託先:原子力機構)												
①強度特性への影響評価試験	-											•
(7) 核変換ターゲットの製造 (再委託先:原子力機構)												
①模擬回収LLFP製造試験	◀											
(8) LLFP回収技術の検討 (再委託先:原子力機構)												
①再処理回収ロス率の評価	-											
(9)照射試験計画 (再委託先:東京都市大学)												
①照射試験計画の策定	-											
(10) 社会科学的意義 (再委託先:東北大学)												
 ①調査·分析・まとめ 												
(11) 研究推進												
①プロジェクトの総合推進												
②全体まとめ												

図 2.1-2 令和元年度研究実施計画図

2.2 各年度計画

各年度の計画の概要を下記のような年度毎の項目別の計画概要として記載する。

平成28年度の項目別の計画概要は以下のとおり。

(1) LLFP 核データの収集・評価では、実験データベースおよび文献により LLFP の核分裂収率に 関するデータを収集し、統計解析および理論解析のためのデータベースを構築する。また評価済 み核分裂収率データライブリーおよび核分裂理論模型を用いる計算値との比較を行う。(2) 核変 換ターゲットの材質、構造、配置(再委託先:東北大学)では、「もんじゅ」ブランケット領域 を想定して、LLFP または LLFP 化合物と中性子減速材の混合物の組成・混合割合、および LLFP タ ーゲット集合体のターゲットピン内のペレット部高さおよび減速材配置をパラメータにした核特 性解析を実施し、核変換率、核変換量とこれらのパラメータの関係を明らかにする。(3)「もん じゅ」炉心特性評価(再委託先:東京都市大学)では、核変換ターゲットを装荷した炉心との比 較のために「もんじゅ」基準炉心の仕様調査、解析データの整備および炉心特性(反応度係数、 出力分布、制御棒反応度等)の解析評価を行う。また、「もんじゅ」ブランケット領域に核変換 ターゲット集合体を装荷した場合のターゲット核変換特性(サポートファクター(SF)等)、炉心 出力分布の解析評価を行う。(4) 核変換構成材料の物性(再委託先:原子力機構)では、核変換 ターゲットの候補となる構成材料について、高速炉の炉内環境や中性子減速材との混合ターゲッ ト製造を考慮した適合性を評価するため、熱伝導度、熱膨張率、融点などの物性とともに水溶性 や酸、アルカリへの可溶性、化学的反応性について、熱力学データベースや文献により調査する。 また、一部の特性については簡易的な実験(物性測定試験)により調査する。(5) LLFP 回収技術 の検討(再委託先:原子力機構)では、炉内から取り出された照射後ターゲットや使用済み燃料 の再処理工程からの LLFP 回収法を確立するため、それぞれにおける核種の存在状態を考慮して 最適な回収手法を検討する。再処理工程からの回収については、再処理プロセスや関連先行研究 の情報を収集し、これらに基づき最適な回収法を検討する。(6) 社会科学的意義(再委託先:東 北大学)では、環境負荷低減の社会的受容性のアンケート調査のための予備検討を行う。(7)研 究推進のうち①プロジェクトの総合推進では、本業務全体を適切に遂行するために再委託者との 連絡を緊密に取り、さらに定期的な会合を開催することで進捗状況を把握し事業を滞りなく進め る。②全体まとめでは、平成 28 年度における成果のまとめを行い、次年度以降の計画策定への 反映と報告書類の作成を行う。

平成29年度の項目別の計画概要は以下のとおり。

(1) LLFP 核データの収集・評価では、平成28 年度に構築した LLFP 核分裂収率データベース、 収集した理論模型計算コードおよび評価済み核分裂収率データライブラリーを基に LLFP 領域核 の核分裂収率およびその精度評価を行う。(2) 核変換ターゲットの材質、構造、配置(再 委託先:東北大学)では、LLFP ターゲット集合体内のターゲットピンおよび減速材のみのピ ンの本数およびピン配置をパラメータにした炉心解析をモンテカルロコード MVP にて実施し、核 変換効果とこれらのパラメータの関係を明らかにする。(3) 高速炉での核変換ターゲット集合体 の配置、交換法(再委託先:東北大学)では、径ブランケット領域の各層に対し、LLFP を含むタ ーゲット集合体、減速材物質のみの減速材集合体、径ブランケット燃料集合体の3種類の集合体 の組み合わせを変化させた各種配置に対し、炉心特性解析を実施し、核変換特性、増殖性、出力 分布等とブランケット配置の関係を明らかにし、適切なブランケット領域の集合体配置を選定す

る。(4)LLFP ターゲットを含む高速炉の炉心特性のうち①炉心特性(再委託先:東京都市大学) では、調査で得られたデータを反映して、各種反応度係数を評価する。また、核変換ターゲット 集合体の出力分布を解析するとともに、燃料のサーマルスパイクを解析評価する。②熱特性では、 高速炉炉心槽内に核変換ターゲット集合体を装荷した場合の炉心出力分布等の炉心特性解析評価 を行う。また、これらのデータを反映して LLFP 集合体の装荷前後の平衡炉心サイクル初期およ び末期の伝熱流動計算が行えるようにするための入力データを作成し、試計算を行う。(5) 核変 換ターゲット構成材料の物性(再委託先:原子力機構)では、核変換対象核種のうち単体融点の 低い Se および Cs について、化合物形態での高温安定性を調査し、高速炉核変換用ターゲットと しての適合性を評価する。また、Se、Pd および I のターゲット候補形態について、中性子減速材 の母相である Y および Zr との高温での反応性を調査する。さらに、異なる形状の YH2 および ZrH2 を製作し、高速炉炉内温度での水素乖離性の差異について調査するとともに、Y および Zr の重水 素化を試みる。(6) LLFP 回収技術の検討(再委託先:原子力機構)では、放射性ヨウ素の核変換 ターゲットの候補形態である Bal2 について、照射後ターゲット組成を模擬した体系からの回収試 験を実施し、ヨウ素の回収率を評価する。得られた回収率から炉内回収ターゲットにおけるロス 率を評価する。なお、本回収試験は安定同位元素を用いて実施する。また、Se、Zr、Pd および Cs について、平成 28 年度に実施した分離検討試験に基づき有効な分離が見込める核種に対して 分離効率を評価する。(7) 社会科学的意義(再委託先:東北大学)では、環境負荷低減の社会的 受容性のアンケート調査の分析を行う。(8)研究推進では、本業務全体を適切に遂行するため に、再委託者との連絡を緊密に取り、さらに定期的な会合を開催することで進捗状況を把握し事 業を滞りなく進めるための調整を実施する。

平成30年度の項目別の計画概要は以下のとおり。

(1) LLFP 核データの収集・評価では、LLFP 核種の中性子捕獲反応断面積データの精度検討と、 共分散データの評価を行う。(2) 高速炉での核変換ターゲット集合体の配置、交換法(再委託 先:東北大学)では、径ブランケット領域の各層に対し、LLFP 核種として ¹²⁹I 等を対象としたタ ーゲット集合体(減速材含む)、径ブランケット燃料集合体等の組み合わせを変化させた配置、 交換法に対し、炉心特性解析を実施し、核変換特性、増殖性等とブランケット領域内の集合体配 置の関係を明らかにし、高核変換特性に適切なブランケット領域の集合体配置、交換法を選定す る。(3) LLFP ターゲットを含む高速炉の炉心特性のうち①炉心特性(再委託先:東京都市大学) では、主炉停止系および後備炉停止系の制御棒反応度価値の解析を行い停止余裕等の評価を行う。 ②熱特性では、LLFP 核変換炉体系における流量配分を設定するための伝熱流動解析を行う。③安 全性(再委託先:東京都市大学)では、ターゲット集合体ピンの破損を想定し、減速材漏出によ る炉心特性の変化を評価し安全性を確認する。そのため、減速材が分離・放出することによる挿 入反応度および出力分布の評価を行う。(4) 核変換ターゲット集合体の構造設計(再委託先:東 北大学)では平成 29 年度の評価で選定された目標性能(LLFP6 核種の SF>1)を達成するピン構成、 集合体構造を設計し、健全性を確認する。そのため、本炉心の流量配分結果を基に LLFP ターゲッ ト装荷したピンの温度評価、ピン圧力評価を行い、健全性を確認する。(5)大型高速炉での適用 性評価(再委託先:東北大学)では、大型高速炉において、高速炉を対象とした LLFP 変換システ ムを適用し、核特性、炉心特性を評価し、大型高速炉での適用性を評価する。(6) 核変換ターゲ ット構成材料の物性(再委託先:原子力機構)では、ターゲット候補形態のうち、先行研究によ

2.2-2

り被覆管材料との共存性が明らかとなっている I と Tc を除き、Se、Zr、Pd、Cs の候補形態につ いて、被覆管材料との共存性を評価する。共存性評価は簡易試験と文献等による調査で実施する。 (7) 核変換ターゲットの製造(再委託先:原子力機構)では、LLFP製造試験として、先行研究や 一般産業技術情報を基に6種のLLFP候補形態の製造手法を明らかにする。また、中性子減速材と して用いるYおよびZrの水素化物、重水素化物について、ペレット状や板状での製造と炉内装荷 状態を想定した温度条件での水素保持特性評価試験を行う。(8) LLFP回収技術の検討(再委託先 :原子力機構)では、6種のLLFP元素のうちターゲット候補形態の選定や照射後状態からの分離 回収法に関する検討が進んでいるBaI2に対して、再処理工程での存在状態からの回収手法につい て実験室規模の回収試験を行い、有効性の検証を行う。また、他のLLFP元素については再処理工 程内での存在状態に応じた回収手法の検討を行い、候補となる回収手法を提示する。さらに、平 成28年度および平成29年度の業務成果に基づき、照射後組成を模擬した成分系における分離手法 の検討を進める。(9) 照射試験計画(再委託先:東京都市大学)では、照射炉の調査を行い、照 射サンプルの種類、サンプルの形状、照射位置等を考慮して照射試験計画を立案する。(10) 社 会科学的意義(再委託先:東北大学)では、LLFP核変換の社会的受容性に関する説明方法の検討 を行う。(11) 研究推進①プロジェクトの総合推進では、本業務全体を適切に遂行するために再 委託者との連絡を緊密に取り、さらに定期的な会合を開催することで進捗状況を把握し業務を滞 りなく進める。②全体まとめでは、平成30年度における成果のまとめを行い、次年度以降の計画 策定への反映と報告書類の作成を行う。

令和元年度の項目別の計画概要は以下のとおり。

(1)LLFP中性子核データの評価検討では、LLFP核種断面積の共分散ファイルの作成および核変 換率の誤差推定を行う。(2)高速炉での核変換ターゲット集合体の配置、交換法(再委託先:東 北大学)では、LLFP核種のターゲット集合体(減速材含む)を、高速炉のブランケット領域およ び遮蔽体領域に装荷する場合の配置、交換法を検討し、炉心核特性解析を実施し、核変換特性、 サポートファクター等との関係を明らかにする。これにより、優れた核変換特性を持つ核変換タ ーゲット集合体の配置、交換法をまとめる。(3)LLFPターゲットを含む炉心特性のうち①炉心特 性(再委託先:東京都市大学)では、LLFP核変換の最適化炉心について炉心特性解析評価を行う。 ②熱特性では、LLFP核変換炉体系における冷却材流量配分を決定しLLFPターゲットの熱的健全性 を評価する。③安全性(再委託先:東京都市大学)では、最適化炉心についてターゲット集合体 ピンの破損を想定し安全性の評価を行う。また、ターゲットピンの破損検出方法概念を検討、提 案する。(4)核変換ターゲット集合体の構造設計(再委託先:東北大学)では、(2)で検討した 結果を基にして、LLFP核種のピン構成、集合体構造の最適化を行う。また、LLFP核種を装荷した ピンの温度評価、ピン圧力評価を行い、健全性を確認する。(5) 大型高速炉での適用性評価(再 委託先:東北大学)では、大型高速炉に対して、今まで検討してきたLLFP核変換手法を適用し、 核特性、炉心特性、安全性を解析し、大型高速炉での適用性を評価する。 (6)核変換ターゲッ ト構造材料の物性(再委託先:原子力機構)では、SUS316鋼とTcを除く5種類のLLFP候補化合物 の共存性試験前後の状態において引張試験を実施し、LLFP核変換ターゲットの候補形態が被覆管 材料の強度特性に及ぼす影響を評価する。(7)核変換ターゲットの製造(再委託先:原子力機構) では、IおよびCsについて、再処理工程を模擬したプロセスから回収しそれぞれを用いて核変換 ターゲット用の候補化合物(BaI2、Cs2CO3)を製造する。各候補化合物の構造解析と不純物分析

2.2-3

を行い、照射後回収元素から製造した候補化合物の特性を明らかにする。また、重水素化物を減 速材とし非放射性のLLFP元素からなる模擬LLFPターゲットを試作し、製造性を明らかにする。試 作する模擬LLFPターゲットは平成30年度までに検討した粉末混合焼結型と混合複合体型の2種類 とする。(8)LLFP回収技術の検討(再委託先:原子力機構)では、先行研究や文献の調査により6 種のLLFPの再処理工程からの分離回収におけるロス率を評価する。一部、模擬元素を用いた溶媒 抽出実験を実施し、ロス率を実験的に評価する。また、LLFPサイクルに関するマテリアルフロー を調査・検討し、再処理工程での分離回収、高速炉による核変換、その後のリサイクルにおける マテリアルバランスを評価する。(9)照射試験計画(再委託先:東京都市大学)では、核変換特 性、集合体の健全性を確認するために高速炉を用いて核変換ターゲット集合体1体を照射する照 射試験計画を策定する。(10)社会科学的意義(再委託先:東北大学)では、LLFP核変換の社会的 受容性に関する説明方法、理解度調査のまとめを行う。(11)研究推進のうち①プロジェクトの総 合推進では、本業務全体を適切に遂行するために再委託者との連絡を緊密に取り、さらに定期的 な会合を開催することで進捗状況を把握し業務を滞りなく進める。②全体まとめでは、平成28年 度から令和元年度における成果のまとめを行い、報告書類の作成を行う。

3. 業務の実施内容および成果

3.1 LLFP 核データの収集・評価

LLFP 核種の中性子捕獲反応断面積データの精度検討と、共分散データの評価を行った。令和 元年度では LLFP 核種の中性子捕獲反応断面積データの誤差を評価し、核変換ターゲット集合体 の核変換率の誤差ならびにサポートファクター(SF)の誤差を評価した。

3.1.1 LLFP 核分裂収率に関わる研究 【H28-H29】

(1) LLFP 核分裂収率に関するデータの収集と評価 【H28】

実験核反応データベース EXFOR および文献により LLFP の核分裂収率に関するデータを収集し、 統計解析および理論解析のためのデータベースを構築した。また評価済み核分裂収率データライ ブラリおよび数種類の核分裂理論模型による計算値との比較を行った。その結果、実験データに は大きな不確定性があることや、理論計算コードの精度に課題があり、評価に利用可能な精度で 実験値を再現できないことが分かった。様々な積分実験の結果等を考慮しつつ、精度を向上させ ることが必要であるとの結論を得た。次年度以降、核分裂生成物収率データの評価手法の確立、 実験値の統計解析や計算値との比較による独自の核分裂収率評価値の決定、評価値の精度を確認 するための崩壊熱や遅発中性子、照射後試験による検証などが必要となることを課題として確認 した。

(2) LLFP を含む核分裂収率の精度評価 【H29】

平成 28 年度に構築した LLFP 核分裂収率実験データベースを元に、原子核質量の偶奇性などを 考慮した新たな評価式を作成した。この評価式を用いて、独立収率について、β崩壊による累積 収率への換算、崩壊熱、遅発中性子、および照射後試験解析による精度評価を行い、JENDL と同 等の精度で計算できることを確認した。

Hauser-Feshbach 統計理論模型を用いて、²³⁶Uの核分裂直後の一次収率を元に累積収率、熱崩 壊、遅発中性子数の評価を行い、実験値や JENDL の評価値を概ね再現できていることを確認した が、一部で再現性に課題があることが分かった。

これらを用いて、LLFP 領域核を含む 1,000 核種以上の核分裂収率およびその精度評価を行った。

3.1.2 LLFP 中性子核データの評価検討 【H30-R1】

国際核データ実験データベース EXFOR から LLFP 中性子捕獲断面積のデータを収集し、各種核 データの値との比較を行った。⁹⁹Tc 以外は実験値が少なく、⁹³Zr,¹⁰⁷Pd では各種核データで熱中 性子領域に違いが見られた。

(1) T6による断面積の評価 【H30-R1】

T6 を用いた JENDL-4.0 の断面積の再現

核データ評価コード群 T6 [3.1-1]を用いて、JENDL-4.0 の断面積を再現できることを確認した。 共鳴領域は完全に再現したものの、連続領域の再現性に課題が残った。T6 と JENDL で、連続領 域の断面積計算に用いる光学ポテンシャルが異なっていることが原因であることが分かった。T6 が使用しているポテンシャルのパラメータを調整して、断面積の再現精度を上げた。

T6 を用いた JENDL-4.0 での共分散の計算

平成 30 年度に、T6 を用いてランダム計算を行うことで共分散を計算できることを確認し、その計算手法を確立した。令和元年度には、ランダム計算でランダムに振るパラメータの振り幅を 調整し、計算誤差が実験誤差や評価済み誤差と一致するようにした。これにより、実験誤差と同 精度の誤差を持った JENDL-4.0 の共分散とみなせる LLFP 中性子核データを作成した。JENDL-4.0 にはない LLFP 核種の共分散が得られた。図 3.1.2-1 に一例として、計算で得られた ⁹⁹Tc の中性 子捕獲断面積の相対標準偏差と相関行列を載せた。

図 3.1.2-1⁹⁹Tcの中性子捕獲断面積の相対標準偏差と相関行列

3.1.3 LLFP 中性子核データによる誤差評価 【R1】

平成 30 年度までに構築した T6 による中性子捕獲断面積評価手法に基づき、今年度は LLFP 核 種である⁹³Zr,⁹⁹Tc,¹⁰⁷Pd,¹²⁹I,¹³⁵Cs の中性子捕獲断面積の相対標準偏差と共分散を求め、核 変換ターゲット集合体の核変換率の誤差ならびにサポートファクター(SF)の誤差を算出するた めのトータルモンテカルロ(TMC)法を構築した。TMC 法を用いて、3 基の高速炉システムに装荷 した核変換ターゲット集合体の核変換率の誤差ならびに SF の誤差を評価した。

(1) トータルモンテカルロ(TMC)法

トータルモンテカルロ法は T6 で作成される一連のランダムな核データファイルを用いて、モンテカルロ法によって種々の炉物理量を求める手法である。[3.1-1]

T6 と TMC 法の一連の処理流れを図 3.1.3-1 に示す。先ず、T6 で作成された ENDF-6 型式の核デ

ータファイル(1000 セット)を核データ処理コード NJOY2016[3.1-2]によりエネルギー群 70 群 構造の群定数を作成した。次に、3.2 節で述べる3基の高速炉システム(A, B, C)のそれぞれ の核変換ターゲット集合体における中性子エネルギースペクトルを高速炉炉心解析システム MARBLE2[3.1-3]の CITATION-FBR モジュールで計算し、得られた中性子エネルギースペクトルを 用いて共鳴の自己遮蔽効果を考慮した実効1 群断面積を作成した。さらに、この実効1 群断面積 を用いて LLFP 核種の生成・消滅計算を行い、核変換率を算出した。この計算を1000 セットにつ いて繰り返すことで、核変換率の期待値と分散を求めた。

(2) トータルモンテカルロ(TMC)法で得られた核変換率とSFの誤差

TMC 法によって得られた核変換率と SF の誤差を表 3.1.3-1 に示す。核種によって不確かさは それぞれ異なるが、システム全体の SF の期待値は全ての LLFP 核種で 3 を超えており、所定の目 標は達成されていることが分かった。誤差を考慮すると ⁹³Zr, ¹⁰⁷Pd, ¹³⁵Cs は平均値-標準偏差では SF が 3 以下となっている。

trans rate %	I-129	Tc-99	Pd-107	Se-79	Zr-93	Cs-135
Α					0.460%	0.200%
В	3.410%	2.470%			0.470%	0.100%
С			2.340%	2.900%	0.480%	0.100%
system	3.410%	2.470%	2.340%	2.900%	0.470%	0.135%
uncertainty	0.155%	0.234%	0.529%	1.360%	0.158%	0.023%
SF	I-129	Tc-99	Pd-107	Se-79	Zr-93	Cs-135
Α						1 0 1 0
					1.041	1.613
В	3.196	3.755			1.041 1.063	<u>1.613</u> 0.733
B C	3.196	3.755	3.254	5.832	1.041 1.063 1.086	1.613 0.733 0.733
B C system	3.196 3.196	3.755 3.755	<u>3.254</u> 3.254	5.832 5.832	1.041 1.063 1.086 3.189	1.613 0.733 0.733 3.080

表 3.1.3-1 TMC 法によって得られた核変換率と SF の誤差

図 3.1.3-1 T6 と TMC 法の処理流れ

参考文献

[3.1-1] A.J. Koning and D. Rochman, "Modern Nuclear Data Evaluation with the TALYS Code System," Nuclear Data Sheets **113** (2012) 2841-2934.

[3.1-2] R.E. MacFarlane, "The NJOY Nuclear Data Processing System, Version 2016," LA-UR-17-20093 (2016).

[3.1-3] K. Yokoyama, T. Jin, Y. Hirai and T. Hazama, "Development of the Versatile Reactor Analysis Code System, MARBLE2," JAEA-Data/Code 2015-009 (2015).

3.2 核変換ターゲットの材質、構造、配置(再委託先:東北大学)【H28~H29】

3.2.1 材質・構造の検討

(1) 材料、配置の検討

①検討方法および解析モデル

原型炉を基準炉心として設定した。用いた基準炉心の炉心仕様を表 3.2.1-1 に示す。

⁹³Zr が LLFP であることから、Zr を含まない水素化物減速材として、Y の重水素化物を基準とす ることとし、サーベイ用の基準計算モデルを作成した。イットリウム重水素化物の密度は $4.3g/cm^{3}$ とし、化学量論比は 2.0 として、重水素イットリウムの組成を設定した。図 3.2.1-1 に MVP 計算モデルを示す。基準としたライブラリは JENDL-4.0 である。LLFP ターゲット集合体は径 ブランケット領域第一層に 54 体、第二層、第三層に各々60 体の合計 174 体、遮へい体領域全 4 層に合計 324 体の全 498 体を装荷する。集合体の断面構成をブランケット燃料集合体と同等

(LLFP 体積比 45%) とし、被覆管厚さを 0.5 mmとした全 61 ピン集合体に対し、減速材を炉心高 さ部第一層 30%、第二層 20%、第三層以下 10%とし、LLFP 元素金属または化合物を 70-90%の 体積割合で混合均質ペレットとして配置した。外側炉心外周部ピンがサーマルスパイクで出力が 増大しないよう、また、LLFP 集合体内の水素による中性子の吸収を低減できるよう、ターゲッ ト集合体ピンは重水素化物 YD₂ と LLFP の混合物とした。なお、61 本のピンはセルフオリエンテ ーション機構と両立するよう全て同一とした。

各ターゲット集合体の軸方向ブランケット高さ部分には、Cs、Zr 集合体には LLFP ペレットを配置した。Se、Tc、Pd、I 集合体に対しては炉心高さ部分のみとした。

Se、Tc、Pd、I 集合体の場合、ターゲット集合体は径ブランケット第一層のみ(54 体)に配置した。上記の各 LLFP を含む元素の同位体組成は原型炉の燃焼度 8 万 MWd/t 取り出し組成としたが、同位体合計の原子数密度は元素分離時原子数密度に一致するよう規格化し、上記の単体体積割合として減速材 YD₂ と混合した。但し、I については BaI₂ 化合物とした。また、Cs については Cs₂CO₃ とした。その他は金属を想定した。

MVP における燃焼計算は FP193 核種の開発者用燃焼チェーンを用い、JENDL-4.0 定数に含まれて いない¹⁰⁹Pd,¹¹⁰Ag は各々¹⁰⁷Pd,¹¹⁰mAg で代用した。

MVP-BURN の燃焼計算モデルでは、ターゲット集合体は燃料交換をしないまま照射される直線燃 焼計算モデルとなっているので、実機適用上は燃焼途中で再処理リサイクルすることを想定する 必要がある。LLFP 集合体寿命を 20 年とし、2 年 10 バッチ交換し直線燃焼計算での MVP-BURN 計 算モデルにおいては 11 年 (5.5 バッチ目)が平衡炉心相当であるとして、6 サイクル目の核変換 率を評価した。但し、Cs の燃焼については連続照射モデルでは 2 年程度で¹³⁴Cs のピークが生じ たため、2 年照射-6 年冷却の照射冷却法で 10 サイクル繰り返した。また、炉心の臨界性をほぼ 一定として、LLFP に照射される中性子束を一定とするために、粗調整棒 10 体を挿入したモデル とした。即ち、MVP-BURN の LLFP 反応率計算においては、炉心から漏えいする中性子束を燃焼期 間中一定となるように、炉心部、軸ブランケット部の燃焼計算時入力体積を仮想的に増大(10 万倍)し、また、²⁴¹Pu 崩壊が進まないモデルとすることで、炉心、軸ブランケットの燃焼が進ま ず、臨界性の変化を無視できるモデルとした。核変換率結果に示す核変換経路で生成される核種

([∞]Se 等)は安定核種であり、LLFP 核種の重量変化は LLFP 集合体内の放射能の減少に相当する。 以上の装荷位置については表 3.2.1-2 にまとめた。 原型炉 8 万 MW d / t 燃料に対する各 LLFP のサポートファクター (SF) については、ターゲッ ト集合体内で単位時間(単位時間としては 1 年とした)当たり核変換されて減少する LLFP 重量 /炉心燃料集合体内で単位時間当たり生成される LLFP 重量、と定義した。なお、年間生成量は、 径方向ブランケットは全て LLFP 集合体のため、炉心燃料集合体のみで生成されたものである。

②材料、配置の検討

径方向ブランケット領域に減速材 YD₂ を装荷した評価を行った。その場合の核変換率と SF を 表 3.2.1-3 に示す。高速炉余剰中性子を有効に利用でき、高速炉の炉心特性への影響を小さくで きる径ブランケット領域に核変換ターゲットを装荷して、YD₂の減速材としての有効性と同位体 分離を必要としない LLFP 各システムが構築できる見通しを得た。[3.2-1]

また減速材を YD₂から YH₂とした場合の核変換率と SF を表 3.2.1-4 に示す。径方向ブランケット 一層に入れた I、Se、Tc、Pd は YH₂の方が I で 1.5 倍、Tc では 1.2 倍、Pd で 1.4 倍、Se で 1.3 倍となるが、Cs、Zr は逆に YD₂の方が YH₂に比較して核変換率が大きくなる。これについては構 造配置検討のところでも減速材を変えて比較を行う。

(2) 材料、構造の検討

① 検討方法および解析モデル

解析手法は 3.2.1(1) ①と同一である。構造配置の検討において、減速材を非均質配置とする こととした。図 3.2.1-2 に体系を示す。減速材ピン減速材比を 30%の場合は 61 本中 18 本、20% では 12 本、10%では 6 本を図 3.2.1-2 の詳細図の部分にピンの配置を示した。また全ての、径方 向ブランケット領域と遮蔽体領域に LLFP を装荷した。

②材料、構造の検討

非均質体系での核変換率と SF を表 3.2.1-5 に均質に装荷した場合を表 3.2.1-6 に示す。この 場合は均質に装荷した方が SF と核変換率は大きくなっていることが分かる。これよりできるだ け集合体内の配置を均質配置に近づけることが核変換率を上げることには有利である。

次に、減速材を YH₂に変更した結果を表 3.2.1-7 に示す。この場合は YD₂よりも核変換率と SF は低下することが分かる。これは、水素(H)の方が減速能力は大きいが、中性子断面積が大き くなる効果により全体の核変換率が下がったと考えられる。 3.2.1(1)項で示した径方向ブラン ケット第1層のみいれた場合は I の場合には核変換率が 1.5 倍と高くなることが分かる。したが って、減速材を YH₂ にする場合は径ブランケット1層だけに配置する方が核変換率は高くなるこ とが分かる。

また炉心長部分だけ装荷した場合の核変換率と SF を表 3.2.1-8 に、上下軸ブランケット高さ の領域までいれた場合の核変換率と SF を表 3.2.1-9 に示す。軸方向ブランケット部は flux が低 下するので、核変換率は低下するが、核変換量は増加することになる。その核変換量の増加効果 はほぼ 20%程度である。したがって SF を増加させるには軸方向ブランケット領域にいれること も重要である。

(3)まとめ

3.2章のまとめを以下に示す。

- ・減速材 YH₂ と YD₂ による変換率を比較した場合、径方向ブランケット第一層にのみ装荷している Se, Te、Pd、I については YH₂ を装荷すると変換率が大きくなる。一方径ブランケット第一層から遮蔽体領域まで装荷した Cs と Zr の場合は、YD₂の方が YH₂より変換率が高くなる。
- ・集合体内での減速材は別ピンとするよりも均質ペレットにする方が核変換率は高くなる。
- ・軸方向ブランケット領域にいれるのは SF を増加させるには有効である。
- ・SF を1以上にするのに必要な装荷領域は Cs の場合が最も大きい。その次に装荷領域が大きい 核種は Zr である。

参考文献

[3.2-1] S.Chiba et al. "Method to reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum reactor", Scientific Reports 7:13961,24 October 2017

項目	単位	仕様	備考
1. 原子炉熱出力	MW	714	ガンマ線発熱分を4MWtと想定する
2. 炉心構成			
(1) 炉心形式			
炉心概念		均質炉心	
炉心領域数		2	
(2)構成要素数			
炉心燃料合計	体	198	
内側炉心	体	108	
外側炉心	体	90	
制御棒	体	19	
半径方向ブランケット	体	174	
中性子遮蔽体	体	324	
(3) 炉心寸法			
高さ	mm	930	
等価直径	mm	1788	
高さ/直径	mm	0.52	
	1	2335	
(4)ブランケット寸法			
径方向厚さ	mm	315	
軸方向厚さ(上/下)	mm	300/350	
(5)集合体配列ピッチ	mm	115.6	
3. 炉心燃料集合体			
燃料材質		MOX	
燃料要素数	本	169	
4. ブランケット燃料集合体			
燃料材質		劣化U	
燃料要素数	本	61	基準炉心条件
5. 燃料交换			
燃焼日数	日	123	基準炉心条件
バッチ数		4	基準炉心条件

表 3.2.1-1 原型炉炉心基本仕様

表 3.2.1-2	評価条件
-----------	------

LLFP	装荷量(g)	ターゲット集合体ペレット配置
⁷⁹ Se	1.05E+05	径ブランケット領域の最内層1層のみ、炉心高さのみ
⁹⁹ Tc	2.09E+06	径ブランケット領域の最内層1層のみ、炉心高さのみ
¹⁰⁷ Pd	4.61E+05	径ブランケット領域の最内層1層のみ、炉心高さのみ
129 I	3.77E+05	径ブランケット領域の最内層1層のみ、炉心高さのみ
93	E 10E+06	径ブランケット領域の3層および遮へい体領域の4層、
Zr	5.10E+06	軸ブランケット高さ部まで
¹³⁵ Cs	4 65F+06	径ブランケット領域の3層および遮へい体領域の4層、
	4.65E+06	軸ブランケット高さ部まで

表 3.2.1-3 LLFP の核変換率(減速材:YD₂(重水素化イットリウム))

LLFP	年平均核変 換量(g/ 年)	半減期間 (年)	物理的半減 期(年)	核変換率 (%/年)	SF	核変換経路
⁷⁹ Se	3.04E+03	16.8	3.27E+5	3.0	78.4	⁷⁹ Se+n→ ⁸⁰ Se
⁹⁹ Tc	2.60E+04	39.8	2.13E+5	1.3	4.8	99 Tc+n \rightarrow Ru
Pd	6.66E+03	32.5	6.5E+6	1.5	2.8	107 Pd+n \rightarrow 108 Pd
129 I	6.61E+03	28.4	1.57E+7	1.8	4.2	129 I+n \rightarrow Xe
⁹³ Zr	1.21E+04	213	1.5E+6	0.2	3.2	93 Zr+n \rightarrow 94 Zr
¹³⁵ Cs	1.69E+04*	518*	2.3E+6	0. 1*	1.6	135 Cs+n \rightarrow 136 Ba

表 3.2.1-4 LLFP の核変換率と SF (減速材 YH2(水素化イットリウム))

LLFP	年平均核変 換量(g/ 年)	半減期間 (年)	物理的半減 期(年)	核変換率 (%/年)	SF	核変換経路
⁷⁹ Se	4.07E+03	11.4	3.27E+5	4.4	115	⁷⁹ Se+n→ ⁸⁰ Se
⁹⁹ Tc	3.12E+04	32.6	2.13E+5	1.5	5.5	99 Tc+n \rightarrow Ru
Pd	8.83E+03	25.4	6.5E+6	2.0	3.7	107 Pd+n \rightarrow 108 Pd
129 I	1.04E+03	17.9	1.57E+7	2.8	6.6	129 I+n \rightarrow Xe
⁹³ Zr	1.69E+04	281	1.5E+6	0.2	2.2	93 Zr+n \rightarrow 94 Zr
¹³⁵ Cs	1.45E+04*	606	2.3E+6	0.1	1.4	135 Cs+n \rightarrow 136 Ba

表 3.2.1-5 各 LLFP の装荷量と核変換量、核変換率(非均質化 1/2/3 各層 18/12/6 ピン、

	減速材 Y	(D_2)			
LLFP	装荷量 (g)	年平均核変換 量(g/年)	S. F.	半減期間 (年)	核変換率(%/ 年)
⁷⁹ Se	2.25E+06	1.22E+04	313	91.4	0.55
⁹⁹ Tc	4.48E+07	3.06E+04	5.65	746	0.067
Pd	9.90E+06	8.98E+03	3.04	549	0.091
¹²⁹ I	8.10E+06	2.10E+04	12.86	195	0.26
⁹³ Zr	5.10E+06	7.85E+03	2.06	356	0.15
¹³⁵ Cs	4.65E+06	1.09E+04	1.06	819	0.060

表 3.2.1-6 各 LLFP の装荷量と核変換量、核変換率(均質混合ペレット)

LLFP	装荷量 (g)	年平均核変換 量(g/年)	S. F.	半減期間 (年)	核変換率(%/ 年)
⁷⁹ Se	2.25E+06	1.81E+04	466	61.8	0.81
⁹⁹ Tc	4.48E+07	6.12E+04	10.8	364	0.14
Pd	9.90E+06	1.71E+04	5.79	285	0.18
¹²⁹ I	8.10E+06	3.22E+04	19.8	124	0.40
⁹³ Zr	5.10E+06	1.21E+04	3.16	213	0.23
¹³⁵ Cs	4.65E+06	1.69E+04	1.65	518	0.10

LLFP	装荷量 (g)	年平均核変換量 (g/年)	S. F.	半減期間 (年)	核変換率(%/年)
⁷⁹ Se	2.25E+06	1.09E+04	280	104	0.48
⁹⁹ Tc	4.48E+07	2.91E+04	5.37	781	0.064
¹⁰⁷ Pd	9.90E+06	8.46E+03	2.87	574.21	0.087
129 I	8.10E+06	1.83E+04	11.24	221.95	0.23
⁹³ Zr	5.10E+06	4.97E+03	1.30	519	0.096
¹³⁵ Cs	4.65E+06	7.79E+03	0.76	1133	0.044

表 3.2.1-7 減速材材質(YH₂)と各 LLFP の装荷量と核変換量、核変換率(非均質化 1/2/3 各層

18/12/6 ピン)

表 3.2.1-8 LLFP 部ペレット高さ(93 cm時)と各 LLFP の装荷量と核変換量、核変換率(非均質 化 1/2/3 各層 18/12/6 ピン)

LLFP	装荷量 (g)	年平均核変換量 (g/年)	S. F.	半減期間 (年)	核変換率(%/年)
⁷⁹ Se	1.21E+06	7.55E+03	195	79	0. 63
⁹⁹ Tc	2.40E+07	2.71E+04	5.00	453	0.11
Pd	5.31E+06	7.99E+03	2.71	331	0.15
129 I	4.34E+06	1.33E+04	8.19	164	0.31
⁹³ Zr	2.74E+06	4.68E+03	1.22	291	0.17
¹³⁵ Cs	2.49E+06	6.88E+03	0.67	696	0.0720

表 3.2.1-9 LLFP部ペレット高さ(183 cm時)と各 LLFP の装荷量と核変換量、核変換率 (非均質化 1/2/3 各層 18/12/6 ピン)

LLFP	装荷量 (g)	年平均核変換量 (g/年)	S. F.	半減期間 (年)	核変換率(%/年)
⁷⁹ Se	2.77E+06	1.29E+04	333	107	0.47
⁹⁹ Tc	5.52E+07	3.09E+04	5.70	906	0.055
Pd	1.22E+07	9.18E+03	3.11	662	0.075
¹²⁹ I	9.97E+06	2. 21E+04	13. 55	228	0. 22
⁹³ Zr	6.28E+06	8.24E+03	2.16	376	0.13
¹³⁵ Cs	5.72E+06	1.15E+04	1.12	952	0.0530

図 3.2.1-1 原型炉炉心径ブランケット領域、遮へい体領域でのイットリウム水素化物減速材による LLFP 核変換モデル(均質混合ピンの場合)

図 3.2.1-2 原型炉炉心径ブランケット領域でのイットリウム水素化物減速材による LLFP 核変換モデル(減速材/LLFP 非均質化時詳細)

3.3 高速炉での核変換ターゲット集合体の配置、交換法(再委託先:東北大学)

3.3.1 配置、交換法の検討【H29-H31】

(1) LLFP を1核種ずつ1炉心に単独装荷したケースについて

① 解析体系

図 3.3.1-1 に各 LLFP 集合体を配置した炉心に対する MVP 計算モデルを示す。基準としたライ ブラリは JENDL-4.0 である。LLFP ターゲット集合体は径ブランケット領域第1層に 54体、第2 層、第3層に各々60体の合計 174体、遮へい体領域全4層に 72、78、84、90体の合計 324体の 全 498体を装荷する。制御棒は全て炉心から引き抜いた状態とする。

ピンへの装荷は LLFP と減速材の混合均質ペレットとする。なお、混合均質ペレットの軸方向の 減速材の装荷割合(体積割合)は、径ブランケット第1層、第2層、第3層の炉心高さ部において、 それぞれ、30%、20%、10%と変更する。径方向遮へい体集合体、および、軸方向ブランケット 高さ部には、LLFP のみ装荷する。但し、軸方向ブランケット領域に装荷する LLFP ペレット径は 軸方向ブランケット燃料のそれと同じとする。

減速材はイットリウム重水素化物(YD₂)とし、密度は 4.3g/cm²、化学量論比は 2.0 とする 。 LLFP は、Se, Zr, Tc, Pd は金属、Cs, I は化合物 (Cs₂CO₃, BaI₂)の形態とする。

LLFP の同位体組成は、原型炉燃焼度 8 万 MWd/t 取り出し組成とするが、同位体合計の原子数 密度は、ImPACT プロジェクト「重水炉と冷中性子を用いた新核変換法」で検討した条件での元 素分離時原子数密度と一致するよう規格化する。なお、BaI2 化合物は ImPACT 条件と同一の 80%TD とする。

MVP-BURN の燃焼計算では、燃焼ステップを繰り返す場合は、2 年照射-6 年冷却とする。軸方 向ブランケット領域に LLFP 装荷する場合、燃焼期間は炉心燃料集合体の炉内滞在期間と等価と なる。「もんじゅ」炉心は最大 148 日/バッチ×5 バッチ=740 日≒2 年となるため、基本的には、 第1ステップで計算する。径方向ブランケット、遮へい体領域への装荷では炉内滞在期間を延ば せる可能性があるため、一部のケースにおいては第2ステップまでの計算も行う。なお、炉心か ら漏えいする中性子束を燃焼期間中一定となるように、炉心燃料部の燃焼変化を無視できるモデ ルとする。

モンテカルロ計算は、総ヒストリ数 100 万(1 万ヒストリ/バッチ、有効バッチ数 100、スキッ プバッチ数 20)とする。

②Cs、Zrの核変換に必要な領域について【H29】

¹³⁵Cs の SF の変化を図 3.3.1-2 に示す。この図より、¹³⁵Cs のサポートファクタ (SF) =1 以上 を確保するためには、第4層まで装荷する必要がある。つまり、全ての径ブランケット集合体と 径方向遮へい体1層を Cs 核変換ターゲット集合体に交換する必要がある。

次に、核変換ターゲット集合体の必要体数が多いのは Zr であった。Cs 核変換ターゲット集合体を第4層まで装荷し、第5層以降の径方向遮へい体を Zr 核変換ターゲット集合体を装荷しても、⁹³Zr の SF は1以上にはならない。

以上のことから、6LLFP(⁷⁹Se, ⁹³Zr, ⁹⁹Tc, ¹⁰⁷Pd, ¹²⁹I, ¹³⁵Cs)を、1 つの炉心で同時にサポートフ アクタ (SF) =1以上を確保するためには、LLFP を装荷する領域を拡大する必要がある。

(3)にて、6核種を同時に装荷する方法を示す。

③6核種のそれぞれ単独装荷での高転換率の検討【H30】

高速炉(原型炉)を想定し、⁷⁹Se、⁹⁹Tc、¹⁰⁷Pd、¹²⁹I、¹³⁵Cs および ⁹³Zr の6 核種を対象に高核変 換率を目指し、径ブランケット領域に LLFP と減速材(水素化イットリウム(YH₂)、重水素化イッ トリウム(YD₂))を含むターゲット集合体、径ブランケット燃料集合体の集合体の組み合わせを変 化させた場合の炉心核特性解析を MVP コード[3.3-1]または SCALE システム[3.3-2]の XSDRN コー ドを用いて実施した。断面積ライブラリーは、MVP コードは JENDL-4.0、XSDRN コードは ENDF-B7.0 の中性子 238 群を使用した。計算モデルを MVP コードについては図 3.3.1-1、SCALE システ ムについては図 3.3.1-3 に示す。MVP コードでは、集合体とピンの形状を忠実に模擬した計算モ デルを使用した。SCALE システムでは、炉心から径ブランケット領域を 1 次元無限円柱でモデル 化した。特に、外側炉心第二層の燃料集合体と径ブランケット第一層に装荷する LLFP ターゲッ ト集合体については、ラッパ管とピン列を円環でモデル化することにより、ピン形状の非均質性 を考慮することにした。

1)⁷⁹Se、⁹⁹Tc、¹⁰⁷Pd、¹²⁹Iの高核変換率の検討【H30】

⁷⁹Se、⁹⁹Tc、¹⁰⁷Pd、¹²⁹Iの4核種について、径ブランケット第1層にターゲット集合体を単独装 荷する。Tc、Pd は金属形態、Se、I は化合物形態(ZnSe、BaI2)で減速材と均質に混合して、ター ゲットピンに装荷する。ターゲット集合体の形状、材質は、ブランケット燃料集合体のそれと同 ーとする。減速材の材質を、水素化イットリウム(YH2)、重水素化イットリウム(YD2)の二種類に ついて、減速材体積比をパラメータとして、核変換率、サポートファクター、および、出力ピー キング(外側炉心燃料第二層の集合体内の最大出力ピンと平均出力ピンとの比)について SCALE シ ステムを用いて解析を行った。[3.3-3] その結果を、図 3.3.1-4 から図 3.3.1-11 に示す。減速 材体積比を高めることにより、減速材材質によらず、高い核変換率を得ることが分かった。一方、 サポートファクターは YH2 については、上に凸の分布となり、体積比 30%から 60%に最大となる ことが分かった。YD2 については、体積比 0%から 40%で最大となるが、その範囲での変化は小さ いことが分かった。出力ピーキングは、減速材比率とともに大きくなり、体積比 80%から急に立 ち上がる傾向にあることが分かった。なお、出力ピーキングは従来炉心では 1.25 程度であり、2 を超えると最大線出力制限を超える可能性が高い。例えば、燃料ペレットを従来の低密度中実ペ レットからより高い線出力が許容できる高密度中空ペレットに取り換えたとしても、出力ピーキ ングは 1.6 程度に抑える必要がある。なお、SCALE システムは 1 次元モデルのため、3 次元効果 を考慮して制限値を定めた。

パラメータサーベイから得られた結果に基づいて、サポートファクターSF>1 の条件の下で、 高核変換率の目標として 8~10(%/年)程度となる減速材材質と体積比を核種毎に選定する。

⁷⁹Se については、YH₂、YD₂、いずれも核変換率が目標の 10(%/年)程度となる減速材体積比はあ るが、出力ピーキングの観点から、YD₂体積比 90%を選択する。この仕様で、サポートファクタ ーは 30 程度であり、SF>1 を満足する。

⁹⁹Tc について、核変換率が目標の 10(%/年)程度となる、減速材材質、体積比は YH₂体積比 90% である。この仕様で、サポートファクターは 5 程度であり、SF>1 を満足する。一方、出力ピー キングは、1.8 程度であり、高密度中空ペレットを採用したとしても、最大線出力制限を満足し ない可能性がある。

¹⁰⁷Pd について、核変換率が目標の 10(%/年)程度となる、減速材材質、体積比は YH₂体積比 90% であるが、出力ピーキングの観点から、YD₂の体積比 90%を選択する。この仕様で、サポートフ ァクターは 5 程度であり、SF>1 を満足する。

¹²⁹I について、核変換率が目標の 10(%/年)程度となる、減速材材質、体積比は YH₂ 体積比 90% である。この仕様で、サポートファクターは 8 程度であり、SF>1 を満足する。一方、出力ピー キングは、2 を大きく超えており、高密度中空ペレットを採用したとしても、最大線出力制限を 満足しない可能性がある。

以上から、⁹⁹Tc と ¹²⁹I については、出力ピーキングを抑制する必要があることが分かったため、 その対策を検討した。

減速材材質として YH₂ を使用した場合、減速能が高いため、減速して発生した多量の熱中性子 が炉心側に漏洩していき、燃料核種の熱群の核分裂断面積が大きいため、燃料集合体内で出力の ピークが生じるためである。そこで、発生する熱中性子の量を制御するため、減速能の低い YD₂ を混合させる方策と、発生した熱中性子を炉心側に漏洩させないために、熱中性子フィルターを 設置する方策の二つを検討した。

⁹⁹Tc については、減速材の材質を YH₂と YD₂を混合する方策をとった。図 3.3.1-12 により、減 速材中の H 比率と核変換率(%/年)、出力ピーキング (PK)との関係を示す。この図より、出力ピ ーキングを 1.6 程度のとき H 比率は 60%であり、その時の 核変換率は 8.5(%/年)程度 であり、 目標を満足する。また、図 3.3.1-13 により、上記仕様において、サポートファクターは 4.5 程 度であり、SF>1 を満足する。

¹²⁹I については、熱中性子フィルターを設置する方策をとった。熱中性子フィルターとしては、 LLFP ターゲット集合体の I ターゲットピンを Tc に置換することとした。計算モデルの図 3.3.1-3 において、第 1 列と第 7 列のピンを LLFP ターゲットピンから Tc ピンに置換し、その体積比を パラメータとして解析を行った。Tc ピンの体積比率と核変換率(%/年)、出力ピーキング (PK)と の関係を図 3.3.1-14 に示す。この図より、出力ピーキングを 1.6 程度のとき Tc ピンの体積比率 は 70%であり、その時の 核変換率は 9(%/年)程度 であり、目標を満足する。また、図 3.3.1-15 により、上記仕様において、サポートファクターは 3 以上であり、SF>1 を満足する。

2)⁹³Zr の高転換率の検討

⁹³Zr について、径ブランケット第1層にターゲット集合体を装荷する。Zr は金属形態で減速材 と均質に混合して、ターゲットピンに装荷する。ターゲット集合体の形状、材質は、ブランケッ ト燃料集合体のそれと同一とする。減速材の材質を、水素化イットリウム(YH₂)、重水素化イッ トリウム(YD₂)の二種類について、減速材体積比をパラメータとして、核変換率、サポートファ クター(SF)、および、出力ピーキング(外側炉心燃料第二層の集合体内の最大出力ピンと平均出 カピンとの比)について SCALE システムを用いて解析を行った。その結果を、図 3.3.1-16 に示す。 この図より、SF が 0.5 程度であり、径ブランケット第2層まで装荷すれば、SF>1を満足するこ とが分かった。また、核変換率と SF との関係で、YH₂と YD₂ は優劣付け難いことが分かった。第 1層と2層に減速材体積比率を同じにして MVP コードにて詳細計算を行った。その結果を図 3.3.1-17、図 3.3.1-18 に示す。これらの図より、SF≒1 での核変換率(%/年)は、YD₂ 体積比 40% で 0.9、 YH₂体積比 40%で 0.9 とほぼ同じ結果が得られた。これは、3.3.(3)項の LLFP を 6 核種 同時に 1 炉心に装荷における SF≒1 の場合の核変換率(0.43(%/年))のほぼ倍になった。なお、出 カピーキングの観点から、YD₂体積比 40%を選定する。

3)¹³⁵Cs の高転換率の検討

¹³⁵Cs について、径ブランケット第1層(RB1)にターゲット集合体を装荷する。Cs は化合物形態 (Cs₂CO₃)で減速材と均質に混合して、ターゲットピンに装荷する。ターゲット集合体の形状、材 質は、ブランケット燃料集合体のそれと同一とする。減速材の材質を、水素化イットリウム (YH₂)、重水素化イットリウム(YD₂)の二種類について、減速材体積比をパラメータとして、核変 換率、サポートファクター(SF)、および、出力ピーキング(外側炉心燃料第2層の集合体内の最 大出力ピンと平均出力ピンとの比)について SCALE システムを用いて解析を行った。¹³⁵Cs の核変 換率の評価には、¹³³Cs→¹³⁴Cs→¹³⁵Cs の生成を考慮した。その結果を、図 3.3.1-19 に示す。この 図より、核変換率と SF は減速材体積比 60%までは YH₂と YD₂の差は殆どないこと、SF は減速材体 積比 60%から急に小さくなること、出力ピーキングの観点から YD₂が有利なことが分かった。

3.3.1(3) 項での結果より、径ブランケット第 1、2、3 層の炉心高さ部に YD₂ 体積比 30%/20%/10%、軸ブランケット高さ部には減速材なし(以下、RB1/2/3(炉心部)=YD30/20/10、 RB1/2/3(軸ブラ高さ部)=YD00)で SF=1 を達成することが分かっており、YD₂ は減速材体積比 60%(YD60)まで SF はほとんど低下しないため、高核変換率を得るため、径ブランケット第1 層は YD60 のままにする。さらに、核変換率を高めるため、できるだけ減速材比率を上げるようにす る。すなわち、第 2 層以降を YD30、軸ブランケット高さ部にも同じ比率の減速材を装荷する。 YD30/20/10 を YD60/30/30 とした場合、SF は余裕があるので、核変換率のさらなる高みを目指 し、かつ、SF をできるだけ損なわないとの考えで、第 2 層の減速材比率を YD60 にした。それら の結果の比較を図 3.3.1-20 に示す。この時点で、ほぼ SF=1 になった。核変換率は 1.1 (%/年) となった。

4) まとめ

LLFP1 核種単独装荷の場合、高核変換特性を持つ核変換ターゲット集合体の配置、交換法を核 種毎に表 3.3.1-1、表 3.3.1-2 にまとめた。

⁷⁹Se については、隣接燃料集合体の出力ピーキングの観点から、YD₂体積比 90%を選択すること により、SF>1 で核変換率が 11.5(%/年)となり、高核変換率の目標を達成することが分かった。

⁹⁹Tc については、出力ピーキングを抑制するために、減速材の材質を YH₂ と YD₂ を混合する方 策をとった。減速材体積比 90%で、減速材中の H 比率を 60%にすることにより、SF>1 で核変換率 が 8.6 (%/年)となり、高核変換率の目標を達成することが分かった。

¹⁰⁷Pd について、出力ピーキングの観点から、YD₂体積比 90%を選択することにより、SF>1 で核 変換率が 10.2 (%/年)となり、高核変換率の目標を達成することが分かった。

¹²⁹I については、出力ピーキングを抑制するために、熱中性子フィルターを設置する方策をとった。熱中性子フィルターとして LLFP ターゲット集合体の第1列と第7列の I ターゲットピンを Tc に置換することとした。この Tc ピンの体積比 70%にすることにより、SF>1 で核変換率が9.0 (%/年)となり高核変換率の目標を達成することが分かった。

⁹³Zr については、核変換率を高める方策として、径ブランケット第 1、2 層に YD₂ 体積比 40%/40%のターゲット集合体を装荷することにより、SF>1 で核変換率が 0.9(%/年)となり、 3.3.1(3)項の 6LLFP 同時装荷で SF≒1 の場合の核変換率(0.43(%/年))のほぼ倍の高い変換率を得 ることができた。

¹³⁵Cs については、核変換率を高める方策として、径ブランケット第 1、2、3 層に YD₂ 体積比
60%/60%/30%のターゲット集合体を装荷することにより、SF>1 で核変換率が 1.1%/年となり、
3.3.1(3)項の 6LLFP 同時装荷で SF≒1 の場合の核変換率(0.43(%/年)) のほぼ倍の高い変換率を
得ることができた。

(2) LLFP を4核種同時に1炉心に装荷したケース【H29】

高速炉(原型炉)を想定し、⁷⁹Se、⁹⁹Tc、¹⁰⁷Pd、¹²⁹Iの4核種のターゲットピンを一つのターゲ ット集合体に装荷し、そのターゲット集合体を径ブランケット第1層に装荷した場合にSF>1の 条件の下で、高核変換率の目標として8~10(%/年)程度となるターゲットピンの配置を検討した。 ターゲットピンの減速材体積比は90%と設定する。減速材材質として水素化イットリウム(YH₂)ま たは重水素化イットリウム(YD₂)とした場合の炉心核特性解析をMVPコードを用いて実施した。 ターゲット集合体の核種ピン配置を図3.3.1-21に示す。61本のターゲットピン本数の核種割り 振りは、3.3.1(1)項のサポートファクターの結果を基に設定した。また、できるだけ対称性を持 たせるように配置した。

ピン内訳は表 3.3.1-3 であり 4 核種で SF>1 であるものを達成した。しかしながら、隣接燃料集 合体のピーキングが図 3.3.1-22 に示すようにピーキングが 2 と高い為、中空ペレットを採用し てスミアをレファレンスの 1/2 に下げることで、出力を 1/2 とすることで出力を下げることがで きた。

なお本集合体は、1集合体にブランケット第1層に4種類のLLFP を入れて SF>1 とできることを 示すことができた。但し、同一集合体に4種類のLLFP をいれることはLLFP の元素での再処理が 困難な、Pd、Se と核変換生成元素を元素分離できる I,Tc を装荷したピンを同一の集合体に装荷 することとなり、LLFP の再処理上再度分離をしないといけなくなることおよび、隣接燃料のピ ーキングが発生し、外側燃料のピンの仕様を変更することが必要となることから、3.3.1(4)項以 降で示すように、別集合体とすることで検討を進めることとした。

(3) LLFP を6 核種同時に1 炉心に装荷したケース【H29】

LLFP を装荷する領域を軸ブランケット領域まで拡大した核変換ターゲット集合体の配置、交換法について検討する。すなわち、軸方向ブランケット領域および径方向ブランケット、径方向 遮へい体を LLFP に変えての装荷方法を検討した。[3.3-4]

軸方向ブランケット領域に配置する LLFP は、接する炉心燃料の発熱で温度が高くなるため、 熱的制限が厳しい Cs、I は除外した。また、減速材も解離温度が比較的低いため混合しないこと とした。

径方向ブランケット、径方向遮へい体領域に配置する LLFP は、3.3.1(1)①項の検討結果から Cs を第1層から第4層まで装荷し、その後ろにIを装荷した。なお、第4層の Cs については、 炉心高さ領域まで装荷した。なお、解析条件ではCs の組成を 20 年冷却の組成とした。 配置においては以下の考え方とした。

・下部遮へい体は炉心支持板の高速中性子照射量を低減させる機能があるため、高い吸収性能 が要求される。このため、上記3元素のうち密度が最も高いPdを配置する。さらに、下部遮 へい体体積割合を高め50%とした。

・TcとSeは燃料ピン内のガスプレナムの中に配置する。

・Seはサポートファクターに余裕があるため、Tcの外側に配置する。

これにより配置検討の結果、6核種の装荷方法として、図 3.3.1-23 に炉心配置図、図 3.3.1-24 に各領域の LLFP の装荷集合体となる配置を選定した。表 3.3.1-4 に炉心の核変換率と SF を示す。 この結果は実効半減期を示すが自然半減期と比較して非常に短縮されていることが示されている。 また本炉心の実効増倍率と増殖比を表 3.3.1-5 に示す。ブランケットを削除しているので、増殖 比は 0.55 程度と下がっている。

炉心の出力分布(炉心部分)をブランケット有と比較したものを図 3.3.1-25 に示す。[3.3-4]

出力分布は YD₂ を用いたためにブランケット有炉心と殆ど同じで本配置は熱的には影響は小さ いことが示されている。また表 3.3.1-6 にボイド反応度とドップラー係数をブランケット有炉心 と比較し結果を示す。ブランケット有炉心と安全上重要な反応度特性は殆ど変わらないことが示 された。また図 3.3.1-24 に示す燃料集合体では、ガスプレナム長が Tc の装荷のために減少して いるが、本炉心は 492 日炉心の為、クリープ損傷に余裕があり燃料健全性上の問題はない。 以上より、6 核種の LLFP に対して、実効半減時間を自然半減時間より大幅に短縮し SF>1 である 核変換システムを構築できた。

(4) LLFP6 核種を装荷した3つの炉心を組み合わせた核変換システム【R1】

3.3.1(3)項の6核種装荷の配置は全ての核種でSF>1を達成したものの、核変換率が低いCs、 Zr を径ブランケット領域に置き核変換率が高くできる I、Tc 等については遮蔽体領域や、軸方 向ブランケットの外側に設置した。そのため、表 3.3.1-4 に示すように全核種の核変換率が 0.5%/年を下回る結果となった。LLFP を照射後に再処理を行うことを考慮すると、低核変換率で はSF>1とする為に炉心に大量のLLFPを装荷することとなり、それにより再処理量も増加するの で、再処理でのロス量も大きくなる。この為、3.3.1(1)②項で検討した、高核変換率の検討結果 の成果を反映して核変換率が大きくかつ6核種が全てSF>1となるシステムを構築することとし た。

この6核種(¹²⁹I、⁹⁹Tc、⁷⁹Se、¹⁰⁷Pd、⁹³Zr、¹³⁵Cs)のシステム構築において、¹²⁹Iと⁹⁹Tcはそれ ぞれ核変換で¹³⁰Xe、¹⁰⁰Ruに核変換して元素分離により除去できる。¹⁰⁷Pdと⁷⁹Seは核変換により 高次の同位体になるため元素分離では核変換生成物を取り除けないため、元素分離による再処理 は行わないこととなる。

この元素の取り扱いの差を考慮して、3 基の高速炉を1つのシステムとして設定し、核変換率が高くできる径ブランケット第1層に、炉心A:CsもしくはZr、炉心B:IおよびTc、炉心C:PdとSeを配置することとしてLLFPの配置を単純化したシステムを設定して検討を行った。なおそれぞれの核種のSFは3炉心で1システムである為、各々の核種でSF>3を目指すこととする。なお、炉心体系は3.3.1(1)項での原型炉と同じとした。

① LLFP 配置検討

3 炉心での各炉の最適化を行う。3.3.1(3)および 3.3.1(1)②項の検討結果から、径ブランケット 第1層に、炉心 A は Zr+YD30%、炉心 B は Tc70%、I20%YH80%、炉心 C は、Pd40%YD60%を 48 体、 Se40%YD60%組成の集合体を 6 体装荷した。また Cs については SF>3 とするにはできるだけ装荷量 を増やすことが必要であることから、炉心 A-炉心 C で径ブランケット第 2 層から遮蔽体第 4 層 までに装荷した。なお、ペレット密度は BaI₂ の密度は 3.3(1)と同じく 80%と、Pd、Tc、Zr、 ZnSe、Cs₂CO₃は 100%とした。

炉心 B の I と Tc の集合体は、I の核変換を高くするため YH₂を減速材に用いることから隣接の外 側燃料集合体の出力ピーキングを高くしないため Tc を集合体の集合体の周辺ピンに配置して YH₂ により減速された中性子を吸収させる構造を採用した。

図 3.3.1-26 にその配置と、その核変換率の結果を表 3.3.1-7 に示す。 本結果は、¹²⁹I の SF は 3 を切っている。また、Se は、過去の検討から想定される SF に比較して、ZnSe の体積比を 40% としているのにも関わらず、SF=3.2 と低い値となっている。また Cs についても SF は 3 以下と なっている。この配置案に対し、まず炉心 B、炉心 C に対して、それぞれの炉心で径ブランケットに装荷された元素の SF が 3 を超えるように調整を行い、その炉心 B と炉心 C および炉心 A の Cs と Zr について 3 炉心での配置を調整することにより 6 核種で SF>3 となる組み合わせを検討 する。

1) 炉心 B における¹²⁹ I と⁹⁹ Tc の調整

炉心 B では、SF は ⁹⁹Tc では超えたが、¹²⁹I では超えていない。これは、I20%YH80%と減速材の 比率が高いためである。これに対し減速材比を下げる(Iの比率を上げる)サーベイを行う。

BaI₂ピンの BaI₂比率を 10%から 40%まで変化させた場合の、炉心 B の ¹²⁹I と ⁹⁹Tc の核変換率と SF を表 3.3.1-8 と図 3.3.1-27 に示す。これによると I40%YH60%でほぼ SF=3 となり、Tc も SF>3 となった。さらに ¹²⁹I の SF に余裕を持たせるために、BaI₂の焼結密度を 80%としていたが、焼結 密度を上昇可能との「3.8 核変換ターゲットの製造」での検討に基づき 95%まで上昇させた結果 を同じく表 3.3.1-8 と図 3.3.1-27 に示した。SF=3.25 となったことより炉心 B については本配 置を採用することとした。

2) 炉心 C における ⁷⁹Se と ¹⁰⁷Pd の調整

炉心 C については、Pd、Se とも SF>3 となっている。しかしながら、Se については、3.3.1(1) ②項でのサーベイから見た場合の核変換率 7.8%に対し、1.9%と低い。この理由は、まずコーナ 一部は中性子束が平均に対して 70%程度となっていることおよび、Pd と Se を混在させたために、 スペクトルが固くなったことが原因である。このため、中性子束の高い六角の辺の中心近傍に装 荷位置を移動させることで、核変換率は 3.22%に上昇した。これより SF も 6 程度とすることが できる見通しとなった。

3) 炉心 A、炉心 B、炉心 C での⁹³Zr と¹³⁵Cs の調整

炉心 B と炉心 C では、いずれも SF>3 となるので、配置案としては図 3.3.1-28 の炉心 B、と炉 心 C となる。これに対して、炉心 A、炉心 B、炉心 C の Zr と Cs の調整を行う。

なお Zr については燃料の上下に Zr の金属ペレット、径ブランケット第1層には、減速材 YD₂ との混合体のペレット状態で装荷することとした。この案を炉心案2とし、その時の、炉心 A か ら炉心 C の変換率と SF を表 3.3.1-9 に示す。これにより 3 炉心システムでは ¹³⁵Cs 以外は SF>3 が達成された。これに対して、以下の対応を行った。

a) Cs の SF の増加方策

SF の増加には装荷量を増加させることが有効と考えられる。これより、ピン径を増加させて 装荷量を増やすことと、20 年冷却の組成を用いていたが、100 年冷却することで図 3.3.1-29 に 示すように、¹³⁷Cs を減衰させて ¹³⁵Cs の比率を増加させることを検討した。その検討した結果を 表 3.3.1-10 に示す。装荷量の増加比率 1.5 倍に対して SF の増加は 1.11 と小さい。その理由は、 核変換率が 0.85 倍に低下しているためである。この効果は、Cs の捕獲断面積が Cs の量の増加 で大きくなり自己遮へいが大きくなったためである。

これより、Csの量的増加効果では、SFは2.36×1.11=2.64程度にしか到達しない。

ここで、SF について、径方向ブランケットと下部軸ブランケットに Cs 装荷した場合と Zr を装荷した場合のおよその SF の数値を表 3.3.1-11 に示す。これより、Cs の SF>3 とするには、径方向ブランケットの Zr を Cs に置き換えることが必要である。

その場合に、Zr は SF が 0.6 程度低下することから、Zr の SF を増加する対策が必要である。な お、ブランケット第1層に装荷する Cs については第1層 Cs70%YD30%と減速材と混合するか第1 層を Cs100%とするかを検討した。この結果は、表 3.3.1-12 に示す。1層目に減速材をいれた方 が若干 Cs の SF が大きくなるので1層目には 30%の YD₂を装荷することとした。なお、表 3.3.1-13 に示すように核変換率は減速材をいれると高くなるが、装荷量は 70%となるので、核変換率× 装荷量の結果の SF としてはあまり大きくなっていない。また図 3.3.1-30 に示すように、中性子 束は減速材をいれないほうが遮蔽体領域では高くなっており、全体としては、表 3.3.1-12 に示 すように 3%以下しか SF は増加していない。しかしながら若干でも SF を増加させることができ るので、減速材を装荷することとした。

b)Zrの増加方策の検討

下部軸ブランケットの Zr については炉心からの中性子束を集合体横断面で受ける為、断面体 積比を増加させると体積比に比例して、SF は増加すると推定される。

これについて評価した結果を図 3.3.1-31 に示す。体積比にほぼ比例して増加している。これは、 炉心下部の体積比を Cs 装荷ピンと同じ 61 本で 12.15mm 相当とすると、SF>1 となることが示さ れている。この構造を 3 炉心ともに適用すると Zr も SF>3 になると考えられた。なお、下部軸ブ ランケット部の Zr については高体積比とするために図 3.3.1-32 に示すセパレートピン型を採用 することとした。

本対策を適用した配置案を図 3.3.1-33 に示す。表 3.3.1-14 に本対策を適用して評価した結果を 示す。6 核種で全て SF>3 を達成している。

c) 炉心特性の確認

炉心特性について、炉心 A、炉心 B、炉心 C の増殖比は表 3.3.1-15 に示す。増殖比はブランケットを全て LLFP としているために増殖比は 0.6 以下となっている。

また出力分布は炉心 B の LLFP 隣接の外側炉心の燃料集合体の出力ピーキングについて評価結果 を表 3.3.1-16 に示す。径ブランケット有炉心より若干小さくなっており、外側炉心のピーキン グは抑えられていることが分かる。また、減速材が、YD2 の場合は、ピーキングは径ブランケッ ト有と同程度であるので、この炉心システムでは流量配分への影響は小さいと考えられる。

また表 3.3.1-17、図 3.3.1-34 に炉心部軸方向平均中性子束分布を示す。炉心 A はほぼ線形に落ちているが、炉心 B, 炉心 C では径方向ブランケットに装荷した I+Tc、Pd、Se の吸収が大きいので、Cs に比較して第1層で低下しその外側集合体は Cs であるのでほぼ線形に落ちていることが分かる。

②まとめ

LLFP6 核種の LLFP の再処理での扱いの差を考慮して 3 つの炉心を組み合わせた核変換システムを提案した。6 核種を同時に1 炉心に装荷した場合に比較して、核変換率が高く、実効半減期 を低くすることができた。LLFP6 核種の装荷配置法を検討した結果、6 核種全てで、SF>3 とする ことができ、隣接燃料集合体の出力ピーキングも低く抑えることができた。

炉心の設定手順は、I, Tc, Pd, Se を炉心 B と炉心 C それぞれのブランケット第一層のみに装荷し SF>3 を確保する。炉心 A, B, C のブランケット第二層から径方向遮蔽体領域と炉心 A のブランケ ット第一層には Cs を装荷する。3 炉心の上下軸方向ブランケット領域には Zr を設置する。Zr の SF を確保する為に下部軸ブランケット領域を太径にして SF>3 とできる装荷量を確保し、6 核 種で SF>3 の 3 炉心システムを設定した。

なお、本結果から核変換率が低い Cs と Zr を削除した場合には、2つの炉心で径ブランケット 第一層だけで装荷 LLFP の SF を 3 以上とできる。その場合、ブランケット燃料を装荷できるため、 LLFP を消滅しつつ、増殖比を1にできる炉心組を得ることができる可能性がある。次項以降に その検討を示す。

(5) LLFP4 核種を装荷した 2 つの炉心を組み合わせた核変換システム

4 核種¹²⁹I、⁹⁹Tc、⁷⁹Se、¹⁰⁷Pd はブランケット第1層に装荷することで、核変換率と SF を大きな炉心を得ることができる。システムの配置を図 3.3.1-35 に示す。また核変換特性と SF を表 3.3.1-18 に示す。本システムで発生する LLFP は 2 基分であるので SF>2 でシステム発生分は核変換可能であるが、SF>3 と余裕があることから例えば軽水炉からの LLFP を装荷して核変換を行うことができる。

また元素分離できない Se と Pd は可能な限り長期に炉内で照射して ⁷⁹Se と ¹⁰⁷Pd の装荷量に 対する取り出したときの残留率を減らすことが必要になる。この場合、照射期間中に同位体元 素比は低下するため照射期間中の総核変換量とその期間中のシステムで発生する同位体量が同 ーとなる状態 (SF=2 の状態) で取り出すことでシステムの発生した Se、Pd を全量核変換した 状態での残留率を確認した。SF=2 となる照射年数は ⁷⁹Se では 96 年、¹⁰⁷Pd では 49 年となる。 その場合の、残留量/装荷量比は ⁷⁹Se で 5%、¹⁰⁷Pd で 29%となる。なお炉心 B、炉心 C は、第1 層に LLFP を配置する以外はブランケット燃料を配置することで増殖比を 0.85~0.95 に上昇可 能である。2 つの炉心の増殖比は表 3.3.1-19 に示す。増殖比 1.2 程度のブランケット有炉心 と組み合わせることでシステムとしては増殖比を約1とすることが可能である。この 3 基組と すると Pu 供給の面で持続可能なシステムとなるが、3 基炉心の場合 SF>3 が目標となり特に ¹⁰⁷Pd の残留量/装荷量比は約 80% (10 年照射) と高くなる。

(6) LLFP3 核種を装荷した2つの炉心を組み合わせた核変換システム

図 3.3.1-36 に示すように地層処分においては、¹²⁹I と ⁷⁹Se が長期間で被ばく量の主たる核 種である。[3.3-5]この 2 核種を処理し、さらに増殖炉と組み合わせることで、システムとして、 増殖比 1 とした持続可能な LLFP 処理システムを設定した。Se、I を SF>3 で処理できるシステ ムとしては炉心 B と炉心 C の経験からに Se40%YD60%の集合体を 4 体装荷するものとした。図 3.3.1-37 にシステム構成を示す。増殖比は 0.83 あることから増殖比約 1.2 のブランケット有炉 心と組みわせることで、増殖比 1.03 となり Pu の供給と Se、I の核変換できる持続可能な 2 基シ ステムとすることができる。なお Tc70%+I40%YH60%集合体を用いるのは LLFP 集合体の隣接外側 炉心燃料集合体の出力ピーキングを抑えるためであり、本炉心は実質的に Tc、I、Se の 3 つの核 種を核変換できるシステムである。なお SF と核変換率は表 3.3.1-20 に示す。この炉心では ⁷⁹Se の 残留率を低減させるために Se 集合体の装荷量を 4 体から 6 体に増加させた場合の配置を図 3.3.1-38 に示す。また Se 集合体の追加の 2 体は六角集合体の設置していなかった辺に装荷する ため、核変換率はほぼ同一で SF は集合体体数比で上昇すると考えられることから表 3.3.1-21 に 示すように SF=5.27 になると推定される。その場合には、Se の SF=2 となる照射期間は 54 年で 残留率は約 8% (核変換率 92%) となる。

(7)まとめ

3.3のまとめを以下に示す。

- ・LLFP を1核種ずつ単独で装荷して検討した結果、Cs、Zr のサポートファクター (SF) を1以 上にするには径ブランケットおよび遮蔽体を殆ど占める程度の量を装荷が必要である。
- ・減速材 YH₂と YD₂は、ブランケット第1層目に装荷する場合は、I は YH₂を用いることで SF は 上昇するが、径ブランケットから遮蔽体に装荷した場合 YD₂の方が YH₂に比較して変換率が上 昇する。
- ・径ブランケット第1層に装荷して、高核変換率を狙ったサーベイでは、I は減速材に YH₂を用 い、集合体の外周部に Tc ピンを配置することで隣接外側炉心の出力ピーキングを抑え、高転 換率を得ることができる。
- ・6 核種を1 炉心に装荷する配置方法を検討し、Cs、Zr を径方向ブランケットから遮蔽体領域内 側に装荷し、その外側に I と上/下部軸ブランケットに Pd、Se、Tc を装荷することで6 核種 を全て SF>1 とすることができた。但し本配置はいずれの核種も核変換率が低いため装荷量は 多くなった。
- ・LLFP の元素分離での再処理の適合性の点で I、Tc、Se、Pd を別に扱うことを考えて 3 炉心を 組み合わせた 6 核種核変換システムを検討した。その結果は以下となった。
- 6 核種全て SF>3 となるシステムを構築でき、かつ I、Tc、Se、Pd は 3%程度の高い核変換率と することができた。これにより I, Tc 等の再処理でのロス量を低く抑えることができる。
- 6 核種の3基炉心組からCsとZrを除く4 核種とすると増殖比を1として持続性のある3基組

での高速炉システムを構築することができた。

- ・4 核種装荷した 2 炉心の組み合わせはブランケット第1層に装荷することで、核変換率と SF を大きな炉心を得ることができるため、軽水炉からの LLFP を装荷して核変換を行うことがで きる。元素分離できない Pd、Se についても SF に余裕があるので、SF=2 となる照射期間では 残留率は Se で 5%、Pd で 29%となる。
- ・I と Se は地層処分での被ばくの支配核種であることを鑑み、Pd を除く I、Tc、Se の 3 核種に 対し1 炉心で 3 核種それぞれ SF>3 となる炉心を設定した。本炉心にブランケット有炉心と組 み合わせ 2 基組で増殖比を1とできる持続性のある核変換システムを構築できた。また元素分 離できない Se に対しても、装荷体数を4体から6体に増やすことで装荷量の92%を核変換可 能である。

参考文献

[3.3-1] Y. Nagaya et al. : JAERI 1348 (2005).

- [3.3-2] Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39, Version 6.1 (June 2011).
- [3.3-3] T. Wakabayashi et. Al. "Study on method to achieve high transmutation of LLFP using fast reactor", Scientific Reports 9, 19156(2019)
- [3.3-4] T. Wakabayasi et. al. "Core concept of simulataneous transmutation of six LLFP nuclides using fast reactor", Nucl. Engi. Design 352,110208(2019). (CN=1)
- [3.3-5] https://www.numo.or.jp/press/houkatsutekigijutsuhoukokusho_setsumeiyou.pdf

LLFP	装荷位置	減速材材質	減速材割合(%)	備考
⁷⁹ Se	径ブランケット第1層(炉心高さ部)	YD_2	90	
⁹⁹ Tc	径ブランケット第1層(炉心高さ部)	YH_2/YD_2	90	HとDとの混合
¹⁰⁷ Pd	径ブランケット第1層(炉心高さ部)	YD_2	90	
¹²⁹ I	径ブランケット第1層(炉心高さ部)	YH ₂	90	Tc ピン設置
⁹³ Zr	径ブランケット第 1/2 層(炉心高さ部)	YD ₂	40/40	
¹³⁵ Cs	径ブランケット第 1/2/3 層	YD ₂	60/60/30	

表 3.3.1-1 高核変換特性を持つ核変換ターゲット集合体の配置、交換法

表 3.3.1-2 核変換特性の比較

LLFP	装荷量(g)	核変換量(g/年)	核変換率(%/年)	SF	備考
⁷⁹ Se	1.05E4	1.09E3	10.4	28.2	MVP
⁹⁹ Tc	2.98E5	2.34E4	7.9	4.3	60%YH2+40%YD2、MVP
¹⁰⁷ Pd	6.38E4	5.26E3	8.0	1.8	YD2 MVP
^{129}I	3.27E4	2.45E3	7.5	1.5	Tc ピン体積比=70%、MVP
⁹³ Zr	1.28E+06	1.12E+04	0.9	1.0	MVP
¹³⁵ Cs	1.72E+06	1.88E+04	1.1	1.1	MVP

表 3.3.1-3 速材材質と LLFP 各元素のピンの本数

ピン本数/減速材材質				ピン配置	備考
⁷⁹ Se	⁹⁹ Tc	¹⁰⁷ Pd	¹²⁹ I		
$3/YD_2$	$12/\mathrm{YH}_2$	$25/\mathrm{YD}_2$	$21/\mathrm{YH}_2$	⊠3.3.1-21	最外周の燃料ピンの燃料スミ
					ア密度を1/2とした

表 3.3.1-4(1/2) 杉	亥変換特性
------------------	-------

LLFP	装荷量	核変換量	核変換率	生成量	SF
	(g)	(g/年)	(%/年)	(g/年)	
⁷⁹ Se	5.08E+05	7.66E+01	0.02%	3.88E+01	1.97
⁹³ Zr	9.14E+05	3.98E+03	0.44%	3.82E+03	1.04
⁹⁹ Tc	4.78E+06	6.02E+03	0.13%	5.42E+03	1.11
¹⁰⁷ Pd	8.24E+06	3.43E+03	0.04%	2.95E+03	1.16
¹²⁹ I	1.97E+06	1.70E+03	0.09%	1.63E+03	1.04
¹³⁵ Cs	2.79E+06	1.20E+04	0.43%	1.05E+04	1.14

表 3.3.1-4(2/2) 核変換特性

LLFP	核変換率	核変換による	物理的半減期
	(%/年)	実効半減期(年)	(年)
⁷⁹ Se	0.02%	4,598	295,000
⁹³ Zr	0.44%	159	1,570,000
⁹⁹ Tc	0.13%	550	211,100
¹⁰⁷ Pd	0.04%	1,666	6,500,000
¹²⁹ I	0.09%	803	15,700,000
¹³⁵ Cs	0.43%	161	2,300,000

表 3.3.1-5 主要核特性

臨界性	1.05955
増殖比	0.560

表 3. 3. 1-6 ボイド反応度とドップラー係数 [3. 3-3]

項目	ボイド反応度	ドップラー係数	
	$(\Delta k/kk')$	(Tdk/dT)	
LLFP 装荷炉心	0.0085	-0.0060	
ブランケット有炉心	0.0080	-0.0055	

表 3.3.1-7 3 基炉心システムの核種毎、炉心毎の核変換率と SF(案1)

反応率(%)

炉心	^{129}I	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
А					0.48	0.23
В	5.33	2.78			0.51	0.12
С			2.58	1.85	0.48	0.13

SF

炉心	^{129}I	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
А					1.41	1.14
В	2.11	4.22			0.86	0.58
С			3.58	3.73	0.81	0.64
計	2.11	4.22	3.58	3.73	3.08	2.36

表 3.3.1-8 炉心 B での I+YH ピンの I の比率と I、Tc の核変換率の関係

組成	^{129}I		⁹⁹ Tc		備考
	核変換率	SF	核変換率	SF	
I10%YH90%	6.37	1.26	2.92	4.43	BaI ₂ ペレット密度 80%
I20%YH80%	5.33	2.11	2.78	4.23	
I30%YH70%	4.48	2.65	2.65	4.03	
I40%YH60%	3.74	2.96	2.52	3.83	
I40%YH60%	3.57	3.35	2.48	3.79	BaI2ペレット密度 95%
ペレット密度高					

Tc : 18本 スミア密度 70% Cs: 径ブランケット第2層~遮蔽体第4層、

Zr:炉心上下軸ブランケット

Zrの核変換率とSF:核変換率 0.51% SF:0.89 で変化なし

Csの核変変換率とSF:

核変換率 0.12%~0.13% SF: 0.55~0.63 で減速材 (YH2)の低下に伴い若干上昇

表 3.3.1-9 3 基炉心システムの核種毎、炉心毎の核変換率と SF (案2)

反応率(%)

炉心	$^{129}\mathrm{I}$	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
А					0.48	0.23
В	3. 57	2.48			0.51	0.12
С			2.48	3.22	0.48	0.13

SF

炉心	^{129}I	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
А					1.41	1.13
В	3.35	3. 77			0.87	0.64
С			3.45	6.48	0.83	0.66
計	3.35	3. 77	3.45	6.48	3.11	2.43

	レファレンス	ペレット径増加(1)	ペレット径増加				
			+				
			100 年冷却組成				
¹³⁵ Cs SF	1.10	1.17	1.22				
SF の比率	1.00	1.06	1.11				
¹³⁵ Cs 装荷量	1.00	1.21	1.21*1.24=1.50				

表 3.3.1-10¹³⁵Cs 同位体の装荷量の増加方策とその SF の増加効果

	Zr	Cs
下部軸ブランケット	0.6	0.34
第1層径ブランケット	0.6	~ 0.4

表 3.3.1-11 Cs と Zr の SF の特性

表 3.3.1-12 第1層に Cs100%とした場合と Cs70%YD30%の場合の炉心 Aの SF と変換率

項目	核変換率(%)	SF
CS70%YD30%	0.20	1.57
Cs100%	0.19	1.54

表 3.3.1-13 第1層に Cs100%とした場合と Cs70%YD30%の場合の炉心 Aの SF と変換率

	核変換率(%)		SF		
	Cs100%	Cs70%YD30%	Cs100%	Cs70%YD30%	
RB1	0.61	1.02	0.31	0.36	
RB2	0.47	0.56	0.26	0.32	
RB3	0.34	0.34	0.19	0.19	
TR1	0.22	0.20	0.15	0.14	
TR2	0.14	0.12	0.10	0.08	
TR3	0.08	0.06	0.06	0.05	
TR4	0.04	0.03	0.04	0.03	

炉心高さ 93cm 部分、各層の数値

表 3.3.1-14 3 基炉心システムの核種毎、炉心毎の核変換率と SF

反応率(%)

炉心	^{129}I	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
А					0.46	0.2
В	3. 41	2.47			0.47	0.1
С			2.34	2.90	0.48	0.1

SF

炉心	¹²⁹ I	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
А					1.03	1.62
В	3.20	3.75			1.06	0.74
С			3.25	5.83	1.02	0.74
計	3.20	3.75	3.25	5.83	3.11	3.10

システムの実効半減期(年)

炉心	^{129}I	⁹⁹ Tc	¹⁰⁷ Pd	⁷⁹ Se	⁹³ Zr	¹³⁵ Cs
A, B, C	20	28	29	24	151	505

表 3.3.1-15 3 基炉心システムの炉心毎の増殖比、実効増倍率

炉心	増殖比	Keff	備考
А	0.541	1.095	
В	0.540	1.074	
С	0.545	1.082	

表 3.3.1-16 3 基炉心システムの炉心 B の隣接外側燃料の集合体内ピーキング

炉心	隣接燃料ピーキング	備考
В	1.22	ブランケット有炉心
		ピーキング~1.25

	IC	OC	TRB1	TRB2	TRB3	TRS1	TRS2	TRS3	TRS4
炉心 A	4.13E+15	2.41E+15	1.22E+15	6.69E+14	3.9E+14	2.12E+14	1.13E+14	5.89E+13	2.88E+13
炉心 B	4.34E+15	2.17E+15	7.96E+14	3.83E+14	2.29E+14	1.3E+14	7.24E+13	3.87E+13	1.95E+13
炉心 C	4.3E+15	2.29E+15	9.15E+14	4.61E+14	2.69E+14	1.46E+14	7.87E+13	4.12E+13	1.99E+13

表 3.3.1-17 3 基炉心システムの炉心部軸方向平均中性子束分布

表 3.3.1-18 4 核種 2 基炉心システムの核変換率と SF

炉心	核種	内訳	集合体	核変換率	SF*	実効半減期
				* (%)		(年)
В	$^{127}\mathrm{I}$	37 ピン	54	3.57	3.36	19.4
В	⁹⁹ Tc	24 ピン	54	2.48	3.77	27.9
С	¹⁰⁷ Pd	61 ピン	48	2.46	3.42	27.7
С	⁷⁹ Se	61 ピン	6	3.22	6.48	21.5

*) 核変換量とSF数値は、案2の炉心での数値とした。

(ブランケット燃料が第2層に設置されている場合にはCsを装荷するよりは核変換量は大きくなる為)

表 3.3.1-19 増殖比

炉心	増殖比	備考
В	0.85	概略値
С	0.95	

		12.	- 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		• • -	
LLFP	装荷量	核変換量	核変換率	生成量	SF	実効半減
	(g)	(g/年)	(%/年)	(g/年)		期(年)
⁷⁹ Se	3.11E+03	1.39E+02	4.45	3.88E+01	3.52	15
⁹⁹ Tc	7.60E+05	1.92E+04	2.53	5.42E+03	3.56	27
¹²⁹ I	1.44E+05	5.25E+03	3.65	1.63E+03	3.18	19

表 3.3.1-20 LLFP3 核種の核変換システムでの核変換率と SF

核特性	値
臨界性	1. 06625 Δ k/kk'
増殖比	0.837

表 3.3.1-21 LLFP3 核種の核変換システムでの核変換率と SF (Se 集合体 6 体)

LLFP	装荷量	核変換量	核変換率	生成量	SF	実効半減
	(g)	(g/年)	(%/年)	(g/年)		期(年)
⁷⁹ Se	4.67E+03	2.08E+02	4.45	3.88E+01	5.27	15
99Tc	7.30E+05	1.84E+04	2.53	5.42E+03	3.41	27
¹²⁹ I	1.38E+05	5.04E+03	3.65	1.63E+03	3.06	19

図 3.3.1-1 原型炉サイズの径方向ブランケット領域での MVP 計算モデル

図 3.3.1-2 Cs 核変換ターゲット集合体の装荷層と¹³⁵Cs の SF の変化

図 3.3.1-3 原型炉サイズの径方向ブランケット領域での SCALE/XSDRN 計算モデル

3.3 - 22

図 3.3.1-4 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(⁷⁹Se)

図 3.3.1-5 減速材体積比と核変換率(%/年)、出力ピーキング (PK)との関係(⁷⁹Se)

図 3.3.1-6 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(99Tc)

図 3.3.1-7 減速材体積比と核変換率(%/年)、出力ピーキング (PK)との関係(⁹⁹Tc)

図 3.3.1-8 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(107Pd)

図 3.3.1-9 減速材体積比と核変換率(%/年)、出力ピーキング (PK)との関係(107Pd)

図 3.3.1-10 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(129I)

図 3.3.1-11 減速材体積比と核変換率(%/年)、出力ピーキング(PK)との関係(¹²⁹I)

図 3.3.1-12 減速材中のH比率と核変換率(%/年)、出力ピーキング(PK)との関係(⁹⁹Tc)

図 3.3.1-13 減速材中のH比率と核変換率(%/年)、サポートファクター(SF)との関係(⁹⁹Tc)

図 3.3.1-14 Tc ピンの体積比率と核変換率(%/年)、出力ピーキング (PK)との関係 (¹²⁹I)

図 3.3.1-15 Tc ピンの体積比率と核変換率(%/年)、サポートファクター(SF)との関係(¹²⁹I)

図 3.3.1-16 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(⁹³Zr)

図 3.3.1-17 減速材 (YD₂) 体積比と核変換率 (%/年)、サポートファクター (SF) との関係 (⁹³Zr)

図 3.3.1-18 減速材(YH2)体積比と核変換率(%/年)、サポートファクター(SF)との関係(⁹³Zr)

図 3.3.1-19 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(¹³⁵Cs)

*炉心高さ部以外は減速材なし

図 3.3.1-20 減速材体積比と核変換率(%/年)、サポートファクター(SF)との関係(¹³⁵Cs)

図 3.3.1-21 ターゲット集合体のターゲットピン配置

図 3.3.1-22 外側炉心第二層の燃料集合体のピン毎ピーキング係数

図 3.3.1-23 LLFP 配置

3.3-34

190YD10 TC100 Se100

図 3.3.1-25 径方向出力分布の比較

Zr100 2		Zr100						
内側炉心	外側炉心	YD30/Zr70	Cs100	Cs100	Cs100	Cs100	Cs100	Cs100
Zr100		Zr100						

Zr100		YD 100						
内側炉心	外側炉心	Tc+YH80I20	Cs100	Cs100	Cs100	Cs100	Cs100	Cs100
Zr100		YD100						

炉心 C

図 3.3.1-26 高速炉核変換システム 案1

図 3.3.1-27 BaI2ピンの BaI2比率と核変換率および SFの関係

炉心 A

炉心 B

炉心 C

図 3.3.1-28 高速炉核変換システム LLFP 配置 案2

図 3.3.1-29 20 年冷却と 100 年冷却の Cs 同位体の比率

全中性子束

図 3.3.1-30 RB 第1層の減速材装荷の有無による Cs 装荷各層での核変換率, SF, 中性子束の挙動

図 3.3.1-31 下部軸ブランケット体積比と Zr の FS の関係

図 3.3.1-32 下部ブランケットへの Zr の装荷方法

炉心 A

Zr100		YD100						
内側炉心	外側炉心	Tc70+YH60I40	Cs100	Cs100	Cs100	Cs100	Cs100	Cs100
Zr100(H.V.)		YD100						

炉心 B

Zr100								
内側炉心	外側炉心	YD60Pd40/YD60Se40	Cs100	Cs100	Cs100	Cs100	Cs100	Cs100
Zr100(H.V.)								

炉心 C

構成概要	Î
------	---

炉心	RB 第1 層	RB2-遮蔽体領域	燃料上下軸ブランケット
А	Cs ₂ CO ₃ :YD ₂ =70:30 太径(12.7mm)ピン	CS ₂ CO ₃ 100% 太径(12.7mm)61本	下部 61 ピン太径 12.7mm 上部 燃料ピン中装荷
В	Tc スミア 70% 24 本ピン BaI ₂ :YH ₂ =60:40 37 本ピン	同上	同上
С	Pd:YD ₂ =60:40 集合体 48 体 ZnSe:YD ₂ =60:40 集合体 6 体	同上	同上

図 3.3.1-33 高速炉核変換システム LLFP 配置

図 3.3.1-34 炉心 A, B、C の炉心部軸方向平均中性子束分布

図 3.3.1-35 LLFP4 核種を装荷した 2 つの炉心を組み合わせた核変換システム

図 3.3.1-36 地層処分の被ばく量の核種の寄与

¹²⁹I、1000 年から 100000 年 ⁷⁹Se 100000 年以降

図 3.3.1-37 LLFP3 核種を装荷した 2 つの炉心を組み合わせた核変換システムの配置

図 3.3.1-38 LLFP3 核種を装荷した 2 つの炉心を組み合わせた核変換システムの配置 (Se 集合体本数増加)

3,4 LLFP 炉心ターゲットを含む高速炉の炉心特性

3.4.1 炉心特性(再委託先:東京都市大学) 【H28-R1】

(1) 平成28年度の実施内容および成果

「もんじゅ」基準炉心の仕様調査、解析データの整備を行い、核変換ターゲットを装荷した炉 心との比較のために炉心特性の解析評価を行った。また、「もんじゅ」ブランケット領域に核変 換ターゲット集合体を装荷した LLFP 装荷炉心の核変換特性[サポートファクター(SF)等]、炉心 出力分布の解析評価を行った。

「もんじゅ」の仕様を基に構築した炉心の炉心特性(反応度係数、出力分布、制御棒反応度等) は基準炉心「もんじゅ」の設置許可申請書を参照して妥当であることを確認した。また、この炉 心の径方向ブランケット領域および遮へい体領域(498 集合体分)に、減速材 YD₂と LLFP 化合物 を核変換率最大となるように適切な比率で混合して装荷した場合、SF>1 を満足しつつ対象 6 核種 の同時核変換が可能であること、さらに各核種単独照射であれば、SF>約 2~5 (⁷⁹Se については約 80)であることが分かった。

(2) 平成 29 年度の実施内容および成果

LLFP 装荷炉心の各種反応度係数を評価した。また、核変換ターゲット集合体の発熱分布および、 燃料のサーマルスパイクを解析評価した。

反応度係数としてナトリウムボイド係数およびドップラー係数の評価を行った。また、γ線な どによる LLFP 棒の発熱解析を行い核変換ターゲット集合体各層の平均発熱量を求めた。第一層 のピンの発熱が最も大きく約15 W/cmとなった。さらに、核変換ターゲット集合体に隣接する燃 料棒のサーマルスパイクの大きさを評価した結果、減速材として水素を用いると集合体内出力ピ ークは著しく悪化するが、重水を用いると大きく改善されることが分かった。

(3) 平成 30 年度の実施内容および成果

LLFP 装荷炉心の主炉停止系および後備炉停止系の制御棒反応度価値の解析を行い停止余裕等の 評価を行った。

必要な燃焼補償反応度および出力補償反応度を評価することにより制御棒所要反応度を求め、 主炉停止系および後備炉停止系の制御棒1本固着時の制御棒価値を求めることにより両停止系の 停止余裕の評価を行い十分な停止余裕があることを確認した。

(4) 令和元年度の実施内容および成果

LLFP 核変換のための最適化炉心として仕様が決定された炉心について炉心核特性の評価を行った。

① 平衡サイクルにおける実効増倍率および出力分布の評価

図 3.4.1-1 に LLFP ターゲット集合体装荷炉心の集合体配置図と LLFP ターゲット集合体の構成

を示す。LLFP ターゲット集合体は外側炉心燃料集合体の外側に 7 層装荷されている。図 3.4.1-1 に示すように LLFP ターゲット集合体の種類と配置は 3 種類の炉心(炉心 A、B、C)で異なり、炉 心 A は¹³⁵Cs、炉心 B は¹²⁹I と⁹⁹Tc、炉心 C は⁷⁹Se と¹⁰⁷Pd の核変換を主目的とした構成である。 また、全ての炉心の燃料領域の上下に LLFP を含むペレット(Zr)が装荷されている。

上記炉心を対象とした平衡サイクルの炉心特性評価を目的として燃焼計算を行った。燃焼計算 は拡散計算コード CITATION[3.4.1-1]を用いて2次元 RZ 体系(図 3.4.1-2(a)に炉心Bの解析体 系を示す。)で行い、実効増倍率が平衡サイクル末期で1付近かつ平衡サイクル初期の最大線出 力が最小となるように内側炉心および外側炉心のPu 富化度を求めた。

表 3.4.1-1 に燃焼計算の条件を示す。燃焼計算は 148 日を1 サイクルとし、10 サイクル目を平 衡サイクルとした。計算に用いるエネルギー群数は 79 群とし、付表 3.4.1-1 に示すように、通 常の高速炉用 70 群ライブラリで最もエネルギーが低い 70 群目を 10 分割して熱中性子エネルギ 一領域の中性子の挙動も考慮している。全ての炉心の炉心燃料集合体の交換バッチ数は 5、炉心 B の ⁹⁹Tc および ¹²⁹I を含む LLFP ターゲット集合体の交換バッチ数は 8 とした。図 3.4.1-2(b)に 燃焼計算における炉心 B の第 1 層 LLFP ターゲット集合体のバッチ交換の取り扱いを示す。Pu 組 成は「もんじゅ」設計基準組成[3.4.1-2]、Pu 富化度の上限は 35 wt%とし、制御棒の中性子吸収 体の下端位置は炉心上端に固定した。

表 3.4.1-2 に燃焼計算結果を示す。平衡サイクル末期で実効増倍率が約1となるように内側炉 心と外側炉心の Pu 富化度を上限 35 wt%の範囲で設定した結果、炉心 B では外側炉心の Pu 富化度 が制限値である 35 wt%に達し、半径方向の出力分布が平坦化できなかった。このため表 3.4.1-2 および図 3.4.1-3 に示すように出力密度は炉心 B の内側炉心の最内層・軸方向中心で最大となっ ている。一方、炉心 A および C では、表 3.4.1-2 に示すように内側炉心と外側炉心の最大線出力 がほぼ等しく、半径方向の出力分布が平坦化されていることが分かる。2 次元計算で求めた最大 線出力では燃料交換による集合体毎の燃焼度の違い(燃焼ミスマッチ効果)や集合体内部の出力 ピーキングが考慮されていないため、最終的な最大線出力は、①項で求めた平衡サイクルの燃焼 組成を用いて③項で議論する。

また、軸・径方向ブランケットを削除した影響により、増殖比は全ての 0.6 を下回っており、 外部から Pu を供給する必要がある。

② ナトリウムボイド反応度およびドップラー係数の評価

表 3.4.1-3 に核特性計算の検討条件(次項の出力ピーキング、炉停止余裕の評価分を含む)を 示す。ドップラー係数およびボイド反応度は平衡サイクル末期の燃焼組成を用いて計算した。

表 3.4.1-4 にナトリウムボイド反応度およびドップラー係数の計算結果を示す。ナトリウムボ イド反応度は炉心Aが最も大きく約1.4 \$となり、炉心Bが最も小さく約0.5 \$となった。炉心B のボイド反応度が炉心A、Cと比べて小さくなったのは、炉心BのLLFP集合体に含まれる減速材 が、減速能の高い YH2 であるため、外側炉心領域のスペクトルがより柔らかくなった結果、ボイ ド時のn値増加が抑えられたためと考えられる。また、全ての炉心でドップラー係数は「もんじ ゅ」設置許可申請書[3.4.1-3]記載の核設計値の範囲内となった。

③ 出力分布および出力ピーキングの評価

①項の検討結果より、最大線出力が最も高い炉心Bを対象に、CITATIONのTRI-Z体系で計算した最大線出力と出力ピーキングの計算結果を表3.4.1-5、図3.4.1-4、図3.4.1-5に示す。なお、燃料交換によって隣り合う燃料集合体の燃焼度が異なることによる最大線出力の変化(燃焼ミスマッチ)を考慮するために必要となる「もんじゅ」の燃料交換パターンは非公開のため、11サイクルから15サイクルにおける燃料装荷パターンを仮に想定し、①項で検討した平衡サイクル初期の燃焼組成を用いてTRI-Z体系による拡散計算をCITATIONで行った。

その結果、表 3.4.1-5 および図 3.4.1-5 に示すように内側炉心最内層に初装荷燃料が装荷された 13 サイクルにおいて、最大線出力が約 409 W/cm と最も高く、燃焼ミスマッチを考慮しない計算と比較して、約 16 %の出力増加となった。なお、平衡サイクル後も最大線出力がサイクルによって変化するのは、燃料交換バッチ数が 5 であり、各サイクルで装荷される新燃料集合体数がサイクル毎に異なることに起因する。13 サイクルにおけるピーク出力集合体は図 3.4.1-6(a)に示す集合体番号 2-3 であり、集合体内の出力は図 3.4.1-5 に示すように炉心中心のナトリウムフォロワに接する領域で最大となった。

上記の計算で求めた各三角メッシュの中性子束から、出力ピーク集合体内の滑らかな中性子束 分布を幾何学的対称性を用いて求め[3.4.1-4,5,6,7]、集合体内燃料棒位置での中性子束から出 カピークを評価した。出力ピーク集合体の平均出力で規格化した集合体内出力ピーキング係数は 1.02 であり、表 3.4.1-5 に示す出力ピーク集合体平均軸方向最大線出力との積より、出力ピーク ピンの最大線出力は 411.8 W/cm となった。以上の結果より、炉心 B の種々の効果を考慮した最 終的な最大線出力は 411.8 W/cm であり、制限値 360 W/cm を超過するため、⑤、⑥項で線出力を 抑制する対策を示す。

④ 炉停止余裕の評価

①項の検討結果を受けて、燃焼反応度が最も高く炉停止余裕が小さいと予想される炉心 B を対象にワンロッドスタックを考慮した制御棒価値を計算し、炉停止余裕の評価を行った。図 3.4.1-6(a)に制御棒配置、図 3.4.1-6(b)に解析で想定した制御棒挿入時の中性子吸収材の軸方向位置を示す。表 3.4.1-3 で示したように、制御棒の反応度価値は 3 次元六角体系用中性子輸送法計算コード MINISTRI[3.4.1-8]に組み込まれている拡散計算モジュールを用い、対称位置を代表する制御棒1本がスタックした場合と制御棒全挿入時における実効増倍率の差から直接計算した。

表 3.4.1-6 に制御棒価値の計算結果を示す。主炉停止系のうち制御棒価値が最大となるのは図 3.4.1-6(a)に示す制御棒配置のうち、1-1CCR であり、この制御棒1本がスタックした場合の挿入 制御棒価値(主炉停止系)は約 10.3 %dk/kk'となった。後備炉停止系のうち制御棒価値が最大 となるのは図 3.4.1-6(a)に示す制御棒配置のうち 4-5BCR と対称位置にある制御棒であり、この 制御棒1本がスタックした場合の挿入制御棒価値(後備炉停止系)は約 4.9 %dk/kk'となった。

表 3.4.1-7 に炉停止余裕の検討結果を示す。炉停止余裕を計算するために必要となる燃焼補償 は①の検討結果を用い、出力補償はもんじゅ設置許可申請書に記載された各種温度係数から算出 した温度反応度と②項の検討結果であるドップラー反応度を用いて設定した。運転余裕と炉の反 応度の誤差吸収は、もんじゅ設置許可申請書に記載された値を用いた。余裕反応度は主炉停止系 で 3.6 %dk/kk'、後備炉停止系で 2.5 %dk/kk'となり、もんじゅ設置許可申請書[3.4.1-3]記載 の値と比較して同等の停止余裕を有することを確認した。

⑤ 最大線出力低減策の検討

③項の検討結果より、炉心 B の最大線出力は燃焼ミスマッチ効果や集合体内中性子束分布を考慮すると 411.8 W/cm となり、制限値 360 W/cm を超過した。これは軸方向ブランケットと径方向 ブランケットの削除により、炉心部の出力分担率が増加したことに加え、Pu 富化度上限のため、 半径方向の出力分布が十分平坦化できなかったこと(表 3.4.1-2 参照)による。なお、もんじゅ設 置許可申請書[3.4.1-3]ではブランケット合計の出力分担率は平衡炉心初期で9%である。

上記の最大線出力増加の要因を受けて表 3.4.1-8 に種々の最大線出力抑制対策とその定性的な 効果および課題・制約を示す。

表 3.4.1-8 より、燃料の被覆管内スミヤ密度を向上させる方策は、燃料-被覆管相互作用を防止できる範囲であれば導入が容易と考えられるため、ここでは、もんじゅ高度化炉心設計時の燃料-被覆管機械的相互作用抑制の考え方より被覆管内スミヤ密度を 85 %TD まで上昇させ、Pu 装荷量および熱伝導率を増加させる検討を行った。

表 3.4.1-9 にペレットの外径は変えずに、燃料ペレットの製造密度を 85 %TD から 90 %TD(被覆 管内スミヤ密度は 85 %TD)まで増大させた場合の CITATION(TRI-Z)による最大線出力の計算結果 を示す。燃料ペレットの製造密度の増大により、Pu 富化度 35 wt%以下を維持したまま内側炉心 と外側炉心の出力を平坦化できたため、最大線出力は約 19 W/cm 低減され、内側炉心で約 390 W/cm、外側炉心で約 392 W/cm となった。しかしながら、線出力制限値 360 W/cm を依然として超 過しているため、⑥項で最大線出力と燃料最高温度の関係について考察し、表 3.4.1-8 に示す対 策②(中空ペレット燃料の採用)の効果を検討する。

⑥ 最大線出力と燃料最高温度の評価

通常運転および異常な過渡変化においては、燃料の許容設計限界を逸脱することなく燃料の健 全性が維持されることが要求されており、最大線出力制限値は下記の燃料設計の考え方により決 定される。

燃料の許容設計限界:原子炉の設計と関連して、燃料の損傷が安全上許容される程度で

且つ、継続して原子炉の運転をすることができる限界

具体的方針:

- 1) 冷却材の沸騰が生じないこと
- 2) 燃料最高温度が燃料融点(2650 ℃)未満となること[未照射燃料]
 (もんじゅ設置許可申請書[3.4.1-3]記載の燃料溶融を防止する観点から設定された燃料最高温度の制限値:2650 ℃)
- 3)運転時の異常な過渡変化時の被覆管温度が830 ℃未満となること [通常運転時は被覆管肉厚中心で675 ℃未満]

上記を踏まえて LLFP 装荷炉心 B における線出力超過への対策として燃料ペレットの製造密度 を 85 %から 90 %に変更した炉心の燃料中心温度(中実ペレット燃料)を概略評価した。なお、 評価にあたってもんじゅ設置許可申請書[3.4.1-3]記載の下記式を用いた。

$$k(T) = 0.01169 + \frac{1}{\left[0.06717 + \frac{0.02226(1-\rho)}{O/M - 1.90}\right]T} + 7.214 \times 10^{-13}T^3$$
(3. 4. 1-1)

ここで、K は熱伝導率、T は温度(\mathbb{C})、 ρ は燃料ペレット製造密度(%TD)、0/M は化学量論比で もんじゅでは 1.97[3.4.1-2]である。これに対応してギャップコンダクタンスは 0.5678 W/cm² \mathbb{C} である。図 3.4.1-7 および表 3.4.1-10 に燃料ペレット製造密度を向上させた場合の燃料最大温 度と最大線出力の関係を示す。燃料ペレットの製造密度が 85 %TD の場合、表 3.4.1-5 より CITATION-TRI-Z 計算による通常運転時の最大線出力が 409.1 W/cm であり、表 3.4.1-10 より過出 力時に燃料最高温度が 2786 \mathbb{C} となり、2650 \mathbb{C} を超過する。燃料ペレットの製造密度が 90 %TD の場合も、表 3.4.1-9 の結果から通常運転時の最大線出力が 391.6 W/cm であるため、表 3.4.1-10 より過出力時の燃料最高温度が 2667 \mathbb{C} となり、2650 \mathbb{C} を超過する。

次に表 3.4.1-8 の対策②(中空ペレット燃料の採用)について検討した。中空ペレット燃料は もんじゅの高度化炉心において検討されており[3.4.1-9,10]、燃料最高温度の抑制が期待できる。 中空ペレット燃料の温度を燃料稠密化効果を含まない下式により評価した。

$$\int_{T_o}^{T_i} k(T) dT = \frac{q'}{4\pi} \left\{ 1 - 2 \frac{R_i^2}{(R_o^2 - R_i^2)} ln \frac{R_o}{R_i} \right\}$$
(3. 4. 1-2)

ここで、iは中空ペレットの内径、oはペレット外径である。

図 3.4.1-8 および表 3.4.1-10 に温度評価結果を示す。燃料ペレットの製造密度を 90 %TD、ペレット中心に 1 mm 径の空孔をあけた場合、通常運転時の最大線出力が 409.1 W/cm であっても燃料最高温度が 2590 ℃であり、温度制限値 2650 ℃以内となった。図 3.4.1-8 より③項で検討した炉心 B の最終的な最大線出力 411.8 W/cm であっても 2650 ℃を下回る見通しである。

さらに、上記の条件では被覆管内スミヤ密度が約82%TDであり、表3.4.1-2に示す炉心Bより もPuインベントリが増加するため、外側炉心のPu富化度を35wt%としたまま内側炉心のPu富 化度を22.8wt%から低減することが可能となり、その場合は出力分布平坦化による最大線出力低 減効果も期待できる。

以上の結果より、燃料ペレットの中空化、高密度化(例えば中空径1 mm、燃料ペレットの製造 密度 90 %TD)を実施することで、過出力時でも燃料最高温度の制限値 2650 ℃を超過しない見通 しである。なお、本計算で求めた燃料最高温度は工学的安全係数が含まれない最確値であり、実 炉の設計においては温度評価に十分な余裕を考慮するため、表 3.4.1-8 に示すような対策の効果 と課題・制約を勘案の上最適な炉心設計を行うことが必要である。

⑦ まとめ

LLFP6 核種の核変換を目的とする 3 種類の炉心 A, B, C の炉心特性を評価した。その結果、燃焼 反応度と最大線出力は炉心 B が最も高くなったため、炉心 B を対象に炉停止余裕と出力分布、出 カピーキングの評価を行った。炉心 B はもんじゅ炉心と同等の炉停止余裕を有することを確認し たが、最大線出力は 3 次元拡散計算結果より線出力制限値 360 W/cm を超過したため、燃料溶融 を防止する観点から対策をまとめ、実施が現実的と考えられる燃料ペレットの高密度化と中空化 の効果について検討した。その結果、例えば中空径 1 mm、燃料ペレットの製造密度を 90 %TD と することで炉心 B の過出力状態を考慮しても燃料溶融を防止できる見込みが得られた。

参考文献

- [3.4.1-1] T. R. Fowler, D. R. Vondy and G. W. Cunningham, "Nuclear Reactor Core Analysis Code: CITATION", ORNL/TM-2469 Rev. 2, Oak Ridge National Lab., (1971).
- [3.4.1-2] 高下浩文他, "核設計手法報告書(技術報告書)"、核燃料サイクル開発機構 東海事業所、JNC TN8410 2000-011、2000 年 5 月.
- [3.4.1-3] 高速増殖炉研究開発センター,原子炉設置許可申請書(高速増殖原型炉もんじゅ原子 炉施設)本文および添付資料(一~十一),独立行政法人日本原子力研究開発機構、 平成18年10月 変更
- [3.4.1-4] M. Goldsmith, "Symmetry Properties of Some Eigenfunctions Occurring in Reactor Analysis," Nuclear Science and Engineering, 17, 3.4.1-124 (1963).
- [3.4.1-5] M. Makai, "Symmetries and the Coarse-Mesh Method," Swiss Federal Institute for Reactor Research, EIR-414, 1980.
- [3.4.1-6] M. Makai and J. Arkuszewski, A Hexagonal Coarse-Mesh Program Based on Symmetry Considerations, Trans. Am. Nucl. Soc., 38, 347-349 (1981).
- [3.4.1-7] M. Makai, "Symmetries Applied to Reactor Calculations," Nuclear Science and Engineering, 82, 338-353 (1982).
- [3.4.1-8] 杉野 和輝, "3 次元六角体系用中性子輸送計算コードの整備 -NSHEX、MINIHEX、 MINISTRI コードの整備-", JAEA-Data/Code 2011-018, (2011).
- [3.4.1-9] 金城 秀人, "「もんじゅ」高度化炉心概念の検討", 敦賀本部 国際技術センター, サイクル機構技報 No.7, 2000, 6.
- [3.4.1-10] HIDEHITO KINJYO et al., "FEASIBILITY STUDY ON AN UPGRADED FUTURE MONJU CORE CONCEPT WITH EXTENED OPERATION CYCLE LENGTH OF ONE YEAR AND INCREASED FUEL BURNUP", NUCLEAR TECHNOLOGY, VOL. 167, P. 254, AUG. 2009.
- [3.4.1-11] 原子力発電環境整備機構, "包括的技術報告書(レビュー版)の概要「包括的技術報告:わが国における安全な地層処分の実現-適切なサイトの選定に向けたセーフティケースの構築-」", p54, 2018年11月21日.
- [3.4.1-12] 羽様 平,他," SLAROM-UF: Ultra Fine Group Cell calculation Code for Fast Reactor -Version 20090113 -," JAEA-Review 2009-003, (2009).
- [3.4.1-13] 飯島進, 他, 「多群拡散摂動計算コード PERKY (2002 年版)」, JAERI-Data/Code 2002-023, (2002).

項目	単位	値				
炉心	_	炉心 A	炉心 B	炉心 C		
LLFP ターゲット集合体	_	¹³⁵ C a	99 T o 129T	⁷⁹ So ¹⁰⁷ Dd		
(第1層)装荷 LLFP 核種		05		se, lu		
LLFP ターゲット集合体	_	¹³⁵ CS	<u> </u>	<u>~</u>		
(第 2~7 層)装荷 LLFP 核種		05	`			
燃料領域の上部/下部	_	937 m	<u>~</u>	<u>~</u>		
装荷 LLFP 核種		LI				
LLFP ターゲット集合体	—	VD (20%TD)	VU (60%TD)*2	VD (60%TD)		
(第1層)装荷減速材		$1D_2(30\%1D)$	1 Π ₂ (60%1D)	$1D_2(00\%1D)$		
- CITATION		CITATION	<i>,</i>	, ,		
		(2 次元 RZ)	<u> </u>	↓		
実効断面積計算コード*3	—	SLAROM-UF ^[3. 4. 1-12]	\leftarrow	<i>←</i>		
計算に用いるエネルギー群構造	-	79 群*1	\leftarrow	\leftarrow		
炉心出力 (γ発熱を除く)	MWt	710	\leftarrow	←		
1 サイクル長さ	EFPD	148	\leftarrow	←		
炉心燃料交換バッチ数		E /E	<i>,</i>	,		
(内側炉心/外側炉心)		5/ 5	<u> </u>	↓		
LLFP ターゲット集合体			0			
(第1層)交換バッチ数		_	0	_		
平衡サイクル数	—	10	\leftarrow	\leftarrow		
Pu 組成(もんじゅ設計基準組成)	+ 0/	0/59	/24/14/4/0 [3.4.1	-2]		
Pu-238/239/240/241/242/Am-241	WL%	% 0/58/24/14/4/0 [3.4.1-2]		-		
Pu 富化度上限值	wt%	35	\downarrow	\leftarrow		
燃料ペレット製造密度	%TD	85	\leftarrow	←		
制御棒の B-10 濃縮度	···+ 0/	20 /00	,	,		
(主炉停止系/後備炉停止系)	WT%	39/90	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
制御棒位置(中性子吸収材下端)	_	炉心上端	\leftarrow	\leftarrow		

表 3.4.1-1 LLFP ターゲット装荷炉心の 2 次元 R-Z 燃焼計算条件

*1 添付表1に示す900 群縮約79 群のエネルギー構造

*2 YH2は、図 3.4.1-1 に示す BaI2 ピンのみ装荷

*3 LLFP ターゲット集合体(Tc, BaI2-YH2)はリングモデル、その他の領域は均質モデルで計算

項目		光存	炉心 A	炉心 B	炉心 C
		- 単位	(C_S)	(Tc、I)	(Pd、Se)
Pu 富化度(Pu/HM)(内側/外側)		wt%	21.7/33.4	22.8/35.0	22.0/35.0
平衡サイクル末期実効増倍率*1		—	0.9997	1.0003	0.9992
最大線出力*2	平衡初期	W/am	323.8/321.9	352.4/316.4	333. 4/331. 2
(内側/外側)	平衡末期	w/ Cm	321. 2/315. 5	345. 1/311. 8	329.2/324.7
出力分担率(内侧/	/外側)	%	56/44	58/42	57/43
取出平均燃焼度()	为側/外側)	GWD/t	91/86	95/81	93/84
燃焼反応度		%dk/kk'	2.82	2. 94	2.85
増殖比		_	0. 58	0. 55	0. 57

表 3.4.1-2 LLFP ターゲット装荷炉心の 2 次元 R-Z 燃焼計算結果

*1 平衡サイクル末期の実効増倍率1を目標にPu富化度調整

*2 燃焼ミスマッチ未考慮

表 3.4.1-3 LLFP ターゲット装荷炉心の核特性検討条件

項目	ボイド反応度*1	制御棒価値	ピーキング係数*5
	ドップラー係数*2	(スタック制御棒価値*3)	
計算コード	• CITATION	• MINISTRI	• CITATION
	• PERKY ^[3. 4. 1–13]	(拡散計算モジュール)	(3 次元 TRI-Z)
	(2 次元 R-Z)	(3 次元 TRI-Z)	
計算に用いる	79 群	79 群	79 群
エネルギー群構造			
燃料組成	燃焼計算結果の	燃焼計算結果の	燃焼計算結果の
	EOEC 組成*4	BOEC 組成*4	BOEC 組成
反応度計算法	厳密摂動理論	直接計算	—

*1 内側燃料と外側燃料領域のラッパ管内部の Na をボイド化させて評価

*2 内側燃料と外側燃料を定格時の温度から 500 K 昇温させて評価

- *3 主炉停止系または後備炉停止系の制御棒全挿入時と制御棒一本のみスタックした際の実効増 倍率の差から評価
- *4 バッチ交換による燃焼期間の違いを平均化した燃料組成を使用

*5 燃焼ミスマッチ考慮

百日		光序	炉心 A	炉心 B	炉心 C
		- 単位	(C_S)	(Tc、I)	(Pd、Se)
ナトリウム	内側炉心	\$	2.6	2.4	2.5
ボイド反応度*1	外側炉心	\$	-1.2	-1.9	-1.7
	炉心合計	\$	1.4	0.5	0.9
ドップラー係数* ²	内側炉心	$Tdk/dT \times 10^{-3}$	-5.5	-5.4	-5.5
	外側炉心	$Tdk/dT \times 10^{-3}$	-1.7	-1.4	-1.2
	炉心合計	$Tdk/dT \times 10^{-3}$	-7.2	-6.8	-6.7
定格時⇒低温停止時*3の	炉心合計	%dk/kk'	0.9	0.9	0.9
ドップラー反応度*4					

表 3.4.1-4 LLFP ターゲット装荷炉心のナトリウムボイド反応度およびドップラー係数

*1 実効遅発中性子割合は 0.353 % (炉心 B の平衡サイクル末期、計算の都合上 70 群で計算)

*2 「もんじゅ」設置許可申請書記載のドップラー係数は-(4.4~7.6)×10⁻³ Tdk/dT

*3 燃料温度が1142 ℃から180 ℃まで低下すると想定

*4 小数点第2位を切り上げ

計算 コード	項目		炉心 B				
CITATION	最大線出力	W/cm	353.8				
TRI-Z	(燃焼ミスマッチ未考慮)*1						
	燃料配置	-	11	10	10	14	15
	(想定サイクル数)		11	12	15	14	10
出力ピーク集合体位置*2		-	3-9	3-2	2-3	3-12	2-2
	出力ピーク集合体	W/cm	389.2	387.8	409.1	387.3	399.5
	最大線出力						
	燃焼ミスマッチファクタ	-			1.16		
	出力ピーク集合体平均軸方向	W/cm			403.7		
	最大線出力(想定サイクル:13)						
集合体内出力	集合体内出力ピーキング	-	1. 02				
分布計算	(集合体最大/集合体平均)						
	最大線出力	W/cm			411.8		

表 3.4.1-5 LLFP ターゲット装荷炉心(炉心 B)の最大線出力(BOEC)

*1 図 3.4.1-3 に示す 2 次元 R-Z 体系の各リングに対応する集合体毎に平均した燃焼組成を設定 *2 図 3.4.1-6(a)の集合体番号に対応

	項目	実効増倍率 [-]	挿入制御棒価値 [%dk/kk']	1 スタック制御棒価値 [%dk/kk']
制御棒全引き	抜き	1.0275	—	—
主炉停止系制御棒全挿入		0.9185	11.55	—
後備炉停止系制御棒全挿入		0.9662	6.17	_
ワンロッド	1-1 CCR スタック*1	0.9291	10. 31	1.24
スタック	4-14 CCR スタック	0.9289	10.33	1.22
	6-15 FCR スタック	0.9270	10.55	1.00
	7-15 CCR スタック	0.9265	10.61	0.94
	4-5 BCR スタック*1	0.9782	4. 90	1.27
	6-30 BCR スタック	0.9758	5.16	1.01

表 3.4.1-6 LLFP ターゲット装荷炉心(炉心 B)の制御棒価値

*1 主炉停止系(CCR、FCR)/後備炉停止系(BCR)においてスタック制御棒価値が最大

表 3.4.1-7 LLFP ターゲット装荷炉心(炉心 B)の炉停止余裕

項目		単位	主炉停止系	後備炉停止系
所要反応度	出力補償*1	%dk/kk'	2.4	2.4
	燃焼補償	%dk/kk'	3. 0	—
	運転余裕	%dk/kk'	0.3	_
	炉の反応度の誤差吸収	%dk/kk'	1.0	—
所要反応度の合計		%dk/kk'	6. 7	2.4
挿入制御棒価値(1 ロッドスタック考慮)		%dk/kk'	10.3	4.9
余裕反応度*3		%dk/kk'	3. 6	2.5
				$(3.7)^{*4}$

^{*1} もんじゅ設置許可申請書記載の温度係数から算出した低温停止までの温度反応度*2に 表 3.4.1-4 に示す定格時→低温停止時に挿入されるドップラー反応度を加えた。

- *2 もんじゅ設置許可申請書記載の温度係数
 - 燃料温度係数 -(3.0~3.9)×10⁻⁶ Δk/k/℃
 - 構造材温度係数 +(6.0~14)×10⁻⁷ Δk/k/℃
 - 冷却材温度係数 +(1.0~28)×10⁻⁷ ∆k/k/℃
 - 炉心支持板温度係数 -(10~12)×10⁻⁶ Δk/k/℃

の絶対値が最も大きくなる組み合わせの和に定格時の燃料温度(1142 ℃)と低温停止時の冷却 材温度(180 ℃)の差(=962 ℃)をかけて温度反応度を算出。

- *3 もんじゅ設置許可申請書では主炉停止系の余裕反応度が 1.4 %Δk/k、後備炉停止系の余裕反応度(1 ロッドスタック未考慮)が 4.1 %Δk/k
- *4 括弧内の値は1ロッドスタック未考慮の場合

表 3.4.1-8 最大線出力低減策の得失整理

最大線出力抑制対策	期待される効果	課題・制約など
①ペレット製造密度増加	・Fu 富化度減少により、径方向出力分布の平坦化が可能 ・燃料の熱伝導度向上により燃料温度が低下	・被覆管内スミヤ密度が 85%TD 以下であれば PCMI (被覆管-燃料相互作用)を回避できる 事を示唆する照射データ ^[3,4,1-9,10] がある。
②中空ペレット燃料の採用	・燃料最高温度の抑制	 ・中空ペレット燃料の場合インベントリ低下 ・上記を補うために燃料高密度化、もしくは 太径燃料の採用が必要
③燃料有効長の長尺化	・長尺化の度合いに応じて最大線出力低下	・炉心圧損の増加 ・ボイド反応度の増加 ・LLFP 核変換率 (%/年)の低下
④燃料ピンの細径化 による本数増加	・本数増加に反比例して最大線出力低下 ・線出力低下に伴い燃料温度が低下	・インベントリが低下し Þu 富化度が増加 ・炉心圧損が増加 ・ピン本数の増加による燃料製造コスト増加
⑤炉出力の低下(削除したブラン ケット分の出力低下を想定)	 出力低下に比例して最大線出力が低下 ・線出力低下に伴い燃料温度が低下 	・経済性の悪化 ・LLFP 核変換率(%/年)の低下
⑥冷却材流量の増加	・流量増加により燃料温度が低下	 ポンプ揚程増加 1 次冷却材出口温度低下による熱効率低下 流量が燃料温度低減に与える効果は小さい
⑦線出力余裕の見直し	 ・線出力制限値が増加 	・安全余裕の低下
⑧燃料交換パターンの工夫	・ハード設計の変更なしに、燃焼ミスマッチファクタを 低減できる	 もんじゅの平衡炉心の燃料交換パターンは 非公開。 六角形状の炉心配置に対して燃料交換バッ チ数が5であることを考慮し最適な燃料交 換パターンを作る必要がある。

表 3.4.1-9 LLFP ターゲット装荷炉心(炉心 B)の 3 次元 TRI-Z 拡散計算結果

燃料ペレッ	ト製造密度向	上の感度解析
-------	--------	--------

		炉心 B	炉心 B
項目	単位		(燃料ペレット
			製造密度向上)
被覆管内スミヤ密度	%TD	80.2	85.0
燃料ペレット製造密度	%TD	85.0	90.1
Pu 富化度(Pu/HM)(内側/外側)	wt%	22.8/35.0	21.2/34.1
内側炉心出力ピーク集合体	W/cm	409.1	390. 1 ^{*1}
最大線出力			
外側炉心出力ピーク集合体	W/cm	376. 3^{*2}	391.6
最大線出力			

*1 表 3.4.1-5 のケースと同じ集合体位置で確認

*2 燃料ペレット製造密度向上のケースと同じ集合体位置で確認

線出力(W/cm)		燃料最高温度(℃)			
通常運転時:	被覆管平均温度	燃料ペレット	燃料ペレット	燃料ペレット	
×1.00		製造密度 85 %TD	製造密度 90 %TD	製造密度 95 %TD	
過出力条件:	の取入値(し)				
×1.16					
	中実	ペレット(外径 5.4	mm)		
360×1.00	589(76.5 cm)	2313(46.5 cm)	2262(46.5 cm)	2195(46.5 cm)	
360×1.16	621(76.5 cm)	2564(46.5 cm)	2519(46.5 cm)	2457(46.5 cm)	
391.6×1.00	607(76.5 cm)	2454(46.5 cm)	2407(46.5 cm)	2342(46.5 cm)	
391.6×1.16	642(76.5 cm)	2710(46.5 cm)	2667(46.5 cm)	2609(46.5 cm)	
409.1×1.00	616(76.5 cm)	2529(46.5 cm)	2483(46.5 cm)	2420(46.5 cm)	
409.1×1.16	653(76.5 cm)	2786(46.5 cm)	2745(46.5 cm)	2689(46.5 cm)	
中空ペレット(内径1 mm, 外径5.4 mm)					
360×1.00	589(76.5 cm)	2168(46.5 cm)	2119(46.5 cm)	2054(46.5 cm)	
360×1.16	621(76.5 cm)	2413(46.5 cm)	2368(46.5 cm)	2307(46.5 cm)	
391.6×1.00	607(76.5 cm)	2306(46.5 cm)	2258(46.5 cm)	2195(46.5 cm)	
391. 6×1.16	642(76.5 cm)	2556(46.5 cm)	2513(46.5 cm)	2455(46.5 cm)	
409.1×1.00	616(76.5 cm)	2379(46.5 cm)	2333(46.5 cm)	2271(46.5 cm)	
409.1×1.16	653(76.5 cm)	2631 (46.5 cm)	2590 (46.5 cm)	2534(46.5 cm)	

表 3.4.1-10 線出力と燃料中心温度評価結果

注)括弧内は温度評価の軸方向位置を示す。

図 3.4.1-1 LLFP ターゲット装荷炉心の構成

3.4-13

図 3.4.1-2 燃焼計算のモデル(炉心 B)

1サイクル燃焼組成

nサイクル→n+1サイクル時のLLFP集合体取替え時

(b) 燃焼計算中の LLFP ターゲット集合体のバッチ交換

初装荷組成

未燃焼集合体装荷 ⇒

注) LLFP集合体取替え時の各組成の重量はLLFP集合体6.75体(=54体÷8) 相当

(a) TRI-Z 拡散計算による燃焼ミスマッチを考慮した径方向(図 3.4.1-6(a)における 9-37 集合体から 9-13 集合体の方向)出力ピーキング係数(想定サイクル数:13)

(b) TRI-Z 拡散計算による燃焼ミスマッチを考慮した軸方向出力ピーキング係数 (想定サイクル数:13、2-3 集合体の最大線出力位置)

図 3.4.1-4 炉心 B の出力ピーキング係数(3 次元 TRI-Z 拡散計算結果)(BOEC)

注) 集合体番号は図 3.4.1-6(a)に対応している。

図 3.4.1-5 炉心 B のピーク集合体内の最大線出力(3 次元 TRI-Z 拡散計算結果) (想定サイクル数:13)

(b) 制御棒挿入時の中性子吸収材の軸方向位置

図 3.4.1-6 制御棒位置

図 3.4.1-7 定格時の最大線出力と過出力時の燃料最高温度の関係(中実燃料ペレット)

図 3.4.1-8 定格時の最大線出力と過出力時の燃料最高温度の関係(中空燃料ペレット)

Group	Upper energy (eV)		lethargy		
	UFLIB. J40 70 群	900 群縮約 79 群	UFLIB. J40 70 群	900 群縮約 79 群	
1	2.00000E+07	\leftarrow	0.94315	\leftarrow	
2	7.78801E+06	\leftarrow	0.25000	\leftarrow	
3	6.06531E+06	\leftarrow	0.25000	\leftarrow	
4	4.72367E+06	\leftarrow	0.25000	\leftarrow	
5	3.67879E+06	\leftarrow	0.25000	\leftarrow	
6	2.86505E+06	\leftarrow	0.25000	\leftarrow	
7	2.23130E+06	\leftarrow	0.25000	\leftarrow	
8	1.73774E+06	\leftarrow	0.25000	\leftarrow	
9	1.35335E+06	\leftarrow	0.25000	\leftarrow	
10	1.05399E+06	\leftarrow	0.25000	\leftarrow	
11	8.20850E+05	\leftarrow	0.25000	\leftarrow	
12	6.39279E+05	\leftarrow	0.25000	\leftarrow	
13	4.97871E+05	\leftarrow	0.25000	\leftarrow	
14	3.87742E+05	\leftarrow	0.25000	\leftarrow	
15	3.01974E+05	\leftarrow	0.25000	<i>←</i>	
16	2. 35178E+05	\leftarrow	0.25000	\leftarrow	
17	1.83156E+05	\leftarrow	0.25000	\leftarrow	
18	1.00100E+000 1.42642E+05	\leftarrow	0.25000	\leftarrow	
10	1.12012E+00 1.11090F+05	←	0.25000	<i>←</i>	
20	8 65170F+04	←	0.25000	←	
20	6.73795F+04	←	0.25000	←	
$\frac{21}{22}$	5.24752F+04		0.25000		
22	1 08677E+04	↓	0.25000	←	
20	3 18278F+04	←	0.25000	←	
24	2.47875E+04		0.25000		
20	1. 93045E+04		0.25000		
$\frac{20}{27}$	1.500450+04 1.50244E+04	<u> </u>	0.25000		
21	1.30344E+04 1.17088E+04	~ ~	0.25000	<u> </u>	
20	1.11000E+04 0.11882E+02	<u> </u>	0.25000	<u> </u>	
29	9.11002E+03 7 10174E+02	<u> </u>	0.25000	<hr/>	
	7.10174L+03 5.52094E+02	~	0.25000	<	
20	0.0004E+00 4 20742E±02	<u> </u>	0.25000	<hr/>	
- 32 - 22	4.30743E+03	<	0.25000		
<u>აა</u> 24	0.00400E+00 0.61050E±02	~	0.25000	<	
25	2.01239E+03	~	0.25000	<	
26	2.03400E+03 1 59461E+02	~	0.25000	<	
30	$1.00401E \pm 000$	-	0.25000		
31 20	1.23410E+03	— ,	0.25000		
38	9.01180E+02	→ (0.25000	→	
39	7.48518E+02		0.25000		
40	0. 82947E+02		0.2000		
41	4.53999E+02		0.25000		
42	3.53575E+02	<i>←</i>	0.25000	→	
43	2. /b3bbE+02	→	0.25000	→	
44	2.14454E+02	\leftarrow	0.25000	\leftarrow	
45	1.67017E+02	\leftarrow	0.25000	\leftarrow	
46	1.30073E+02	\leftarrow	0.25000	\leftarrow	
47	1.01301E+02	\leftarrow	0.25000	\leftarrow	
48	7.88932E+01	\leftarrow	0.25000	\leftarrow	
49	6.14421E+01	\leftarrow	0.25000	\leftarrow	

付表 3.4.1-1 (1/2) 70 群炉定数ライブラリと 900 群縮約 79 群のエネルギー構造(1/2)

Group	Upper energy (eV)		lethargy	
	UFLIB. J40 70 群	900 群縮約 79 群	UFLIB. J40 70 群	900 群縮約 79 群
50	4.78512E+01	\leftarrow	0.25000	\leftarrow
51	3.72665E+01	\leftarrow	0.25000	\leftarrow
52	2.90232E+01	\leftarrow	0.25000	\leftarrow
53	2.26033E+01	\leftarrow	0.25000	\leftarrow
54	1.76035E+01	\leftarrow	0.25000	\leftarrow
55	1.37096E+01	\leftarrow	0.25000	\leftarrow
56	1.06770E+01	\leftarrow	0.25000	\leftarrow
57	8.31529E+00	\leftarrow	0.25000	\leftarrow
58	6.47595E+00	\leftarrow	0.25000	\leftarrow
59	5.04348E+00	\leftarrow	0.25000	\leftarrow
60	3.92786E+00	\leftarrow	0.25000	\leftarrow
61	3.05902E+00	\leftarrow	0.25000	\leftarrow
62	2.38237E+00	\leftarrow	0.25000	\leftarrow
63	1.85539E+00	\leftarrow	0.25000	\leftarrow
64	1.44498E+00	\leftarrow	0.25000	\leftarrow
65	1.12535E+00	\leftarrow	0.25000	\leftarrow
66	8.76425E-01	\leftarrow	0.25000	\leftarrow
67	6.82560E-01	\leftarrow	0.25000	\leftarrow
68	5.31579E-01	\leftarrow	0.25000	\leftarrow
69	4.13994E-01	\leftarrow	0.25000	\leftarrow
70	3.22419E-01	\leftarrow	10.38102	0.12500
71	_	2.84533E-01		0.12500
72		2.51100E-01		0.12500
73	_	2.21595E-01		0.12500
74	_	1.95557E-01		0.12500
75		1.72578E-01		0.12500
76		1.52300E-01		0.25000
77		1.18611E-01		2.00000
78		1.60523E-02		3.00000
79		7.99196E-04		4.38102

付表 3.4.1-1 (2/2) 70 群炉定数ライブラリと 900 群縮約 79 群のエネルギー構造(2/2)

付録1 LLFP の炉心内装荷

減速材を用いた径・軸方向ブランケット位置への LLFP 装荷方式では、下記の課題がある。

・ブランケットの削除による炉心出力分担率の増加および増殖比の低下

・LLFP ターゲット集合体に含まれる減速材による隣接燃料集合体での出力ピークの発生

・大型炉心での LLFP 核変換率およびサポートファクタの低下

そこで、軸方向・径方向ブランケットを維持する LLFP 装荷法の可能性について検討するため、 付図 3.4.1-1 に示すように減速材を含まない LLFP ピンを燃料集合体の 6 つの角に配置した炉心 (炉心 D)の炉心特性を評価した。

検討条件を付表 3.4.1-2 に示す。装荷する LLFP 核種は、地層処分後の放射性核種の移行量を 考慮した生活圏での被ばく線量の支配核種(処分場閉鎖後約 10 万年まで支配的)である ¹²⁹I[3.4.1-11]とし、化学形態は炉心 B と同じ BaI₂とした。その他の LLFP 核種は装荷せず、炉心 A~C とは異なり、軸方向ブランケットおよび径方向ブランケット集合体は装荷する。

炉心 D は減速材を用いないため、計算には通常の高速炉用 70 群ライブラリと同じエネルギー 群構造を用いた。LLFP ピンを含む燃料ピンの実効断面積は LLFP ピンが集合体の角に存在する効 果を簡易的に考慮するため付図 3.4.1-2 に示す多重リングモデルで計算し、その結果を用いて付 図 3.4.1-3 に示す炉心 D の 2 次元体系で拡散燃焼計算を行った。

検討結果を付表 3.4.1-3 に示す。ブランケットを維持したことにより、炉心部の出力分担率が 炉心 B と比較して減少し、最大線出力は約 300 W/cm となり、1.16 程度の燃焼ミスマッチファク タを考慮しても線出力制限値 360 W/cm を下回る見通しが得られた。

付表 3.4.1-3 に参考値として示している、「LLFP ピンを装荷していないもんじゅ相当の炉心」の解析結果と比較しても、LLFP ピンの装荷によるボイド反応度やドップラー係数への影響は小さい。また増殖比は約 1.1 となり、炉心 A~C とは異なり Pu の増殖が可能である。なお、¹²⁹I の年間核変換率は約 3.7 %/年となった。

まとめると、LLFP6 核種のうち、地層処分後約 10 万年までの被ばく線量の支配核種となる¹²⁹I のみを燃料集合体内に装荷し、軸・径方向ブランケットを維持した炉心の特性を評価した。その 結果、ボイド反応度、ドップラー反応度に大きな影響を与えることなく、増殖比は約1.1、¹²⁹Iの 年間核変換率が約 3.7 %/年となることを確認した。ここでは、LLFP 集合体の炉内装荷による炉 心への影響や核変換への効果を評価したものであり、より具体的な検討においては物性や熱的制 限等も考慮する必要がある。

付表 3.4.1-2 燃料集合体内 LLFP 装荷炉心 (炉心 D) 検討条件

項目	単位	値		
炉心	_	炉心 D		
燃料集合体内装荷 LLFP 核種	_	¹²⁹ I		
		内側/外側炉心燃料集合体の角6ピン		
LLFP C ン 装何 位 直		(付図 3.4.1-1)		
燃焼計算っ	-	CITATION		
		(2 次元 RZ)		
計算に用いるエネルギー群構造	-	70 群		
炉心出力 (γ発熱を除く)	MWt	710		
1 サイクル長さ	EFPD	148		
炉心燃料交換バッチ数		E /E		
(内側炉心/外側炉心)	_	0/0		
径方向ブランケット交換バッチ数	_	5		
平衡サイクル数	_	10		
Pu 組成(もんじゅ設計基準組成)	···+ 0/	0/58/24/14/4/0 [3:4.1-2]		
Pu-238/239/240/241/242/Am-241	WL%	0/ 38/ 24/ 14/ 4/ 0		
Pu 富化度上限值	wt%	35		
燃料ペレット製造密度	%TD	85		
制御棒の B-10 濃縮度	+ 0/	20/00		
(主炉停止系/後備炉停止系)	WL%	22/20		
制御棒位置(中性子吸収材下端)	_	炉心上端		

付表 3.4.1-3 LLFP ターゲット装荷炉心の 2 次元 R-Z 拡散燃焼計算および摂動計算結果(炉心 D)

項目		単位	炉心 D	LLFP 装荷しない
			(^{129}I)	もんじゅ相当炉心*4
				(参考値)
Pu 富化度(Pu/HM)(内側/外側)		wt%	22.4/32.0	21.2/30.8
平衡サイクル末期	実効増倍率*1	—	1.0010	1.0013
最大線出力*2	平衡初期	W	298.9/295.0	297.7/298.0
(内側/外側)	(内側/外側) 平衡末期		286. 1/283. 5	286. 4/286. 0
燃焼反応度		%dk/kk'	2.3	2.2
増殖比		—	1.12	1.15
実効遅発中性子割合		%	0.361	0.364
ボイド反応度		\$	1.7	1.6
ドップラー係数		Tdk/dT imes	-6.4	-7.1
		10^{-3}		
取出しLLFP(¹²⁹ I)核変換率		%	7.6	_
(5 サイクル)* ³				
取出しLLFP(¹²⁹ I)年間核変換率 ^{*3}		%/年	3. 7	_
平衡サイクルの LLFP (¹²⁹ I)		kg/年	2.3	
核変換量				

*1 平衡サイクル末期の実効増倍率1を目標にPu富化度調整

*2 燃焼ミスマッチ未考慮

*3 参考結果

*4 LLFP を装荷しないこと以外は付表 3.4.1-2の条件と同じとした。

付図 3.4.1-1 燃料集合体中に配置した LLFP ピンの位置(炉心 D)

付図 3.4.1-2 燃料集合体の実効断面積を計算する際の多重リングモデル(炉心 D)
6. 1	10.0 10.4 3.5	3.5	3.5	10.5	8.6	3.8	8.6	10.5	10.5	10.5	10.5	10.5	10.5	10.5	20.3	寸法[cm]
即棒		即棒				即棒	<u>軸</u> つ ガン	<mark>方向</mark> 返 スプレ	を一般体	<u>.</u>						10.3
制御		制御		軸方	向	制御	ブラ	ンケ	ット							30. 0
フォロワ	内側炉心	フォロワ				フォロワ		外側	炉心	径 だ ブラ	5向 ランケ	·ット	径方	向遮	蔽体	18.6 18.6 18.6
μ η <u></u> Δ		РIJウД		軸方	向	ЧЧД	ブラ	シケ	·ット							18. 6 18. 0
+		+				+	軸	方向近	庶蔽体	4						26. 5

付図 3.4.1-3 燃焼計算における 2 次元 R-Z 炉心モデル(炉心 D)

3.4.2 熱特性【H29-R1】

(1) 平成 29 年度の実施内容および成果(再委託先:東京都市大学)

高速炉炉心槽内に核変換ターゲット集合体を装荷した場合の炉心出力分布等の炉心特性解析評価を行った。また、これらのデータを反映して LLFP 集合体の装荷前後の平衡炉心サイクル初期および末期の伝熱流動計算を行うための入力データを作成し、試計算を行った。

炉心特性解析から、LLFP 装荷時の径方向および軸方向の炉内出力分布を評価した。また、核変 換ターゲットの物性値および使用制限値を基に各 LLFP を単体で装荷した場合の許容線出力を評 価し LLFP ピン仕様の選定・炉内装荷位置選定のデータとした。さらに、セシウムは発熱が大き いことから核変換ターゲット集合体の製造工程(ピンの自然循環、He リーク試験、集合体組み立 て時)を想定して必要な冷却時間を設定した。これらの試計算を通して伝熱流動解析に必要な LLFP ペレットの仕様・物性、LLFP 集合体仕様・装荷位置、炉心の出力分布などの熱計算用入力 データを作成した。

(2) 平成 30 年度の実施内容および成果

LLFP 核変換炉体系における流量配分を設定するための伝熱流動解析を行った。

LLFP 核変換炉体系における伝熱流動解析より、LLFP ターゲットピンの中心温度が制限温度以下となるための流量配分を設定した。これにより、本解析で示した流量になるように集合体入口部の抵抗を調整することで、LLFP入り集合体を装荷することができると結論できた。しかし、炉心中央部領域の被覆管中心温度は制限値に近く、サーマルスパイクによるローカルピーキングを低減する工夫が求められる事が判明した。

(3) 令和元年度の実施内容および成果

LLFP 核変換炉体系における冷却材流量配分を決定し LLFP ターゲットの熱的健全性を評価した。

① はじめに

本研究においては、LLFP4 核種 (⁷⁹Se, ⁹⁹Tc, ¹⁰⁷Pd, ¹²⁹I) を「もんじゅ」並みの高速炉炉心のブ ランケット第1列(リング9) (炉心中心を0列として第9列目)に配置し、全核種に対して核 変換率 10%/年でサポートファクタ(SF)が1以上となるような炉心配置を可能とすることを検討 してきた。しかしながら、この案では、¹²⁹I を装荷した集合体に面した外側炉心の数本のピンに、 3 倍を超える局所ピーキングが発生し、内側炉心および外側炉心の集合体全体の流量を限度まで 低減し第8列の外側炉心集合体にまわすことをしなければ冷却できない状態であった。この状態 を改善するため、LLFP は3つの独立した炉心で燃焼させ、LLFP の燃焼と同時に増殖比も3基平 均で1を超えるようにし、サーマルスパイクを避けるため¹²⁹I ピンの周囲を⁹⁹Tc ピンで囲む案が 提案された。炉心Aは第9列目に¹³⁵Cs 単体,炉心Bは 60YH₂-40BaI₂,(¹²⁹I),炉心Cは 60YD₂-40Pd,(¹⁰⁷Pd),60YD₂-40Se,(⁷⁹Se)の集合体案が提案された。第10列目以降は、全ての炉心で ¹³⁵Cs の集合体が装荷される。これら LLFP の集合体に関しては、元来径方向のブランケット集合 体が装荷されていた第9列からの3列および反射体・遮蔽体の4列に、目的に合わせピン本数を 変更した炉心Bの第9列目、全ての炉心の10列目以降は、太径化したピンを用いて SF の値を向 上させている。LLFP として1種類のピンしか装荷されておらず重水素を減速材として用いている 炉心 A、C のピーキングは、水素を減速材として用いまた Tc ピンの中性子吸収で高いピーキング が生じる炉心 B より小さくなる。上記の理由によって、炉心 B が熱的に厳しくなる炉心となる。

さらに、炉心の軸方向ブランケットに装荷していた⁹³Zr をこれまで以上に燃焼させるため、図 3.4.2-1 に示すように駆動燃料集合体の下側に配置してある⁹³Zr の集合体を上部の燃料と分離し た短尺の太径 61 本集合体で置き換えた体系が提案された。3 つの炉心の中で熱水力的に最も厳し くなる炉心は、炉心 B であり、下側の集合体を狭いピッチで配置しているため、流路面積が減少 して流動抵抗が増し、集合体の温度が上昇する可能性がある。これら、全ての問題を統合的に解 析して、LLFP のペレット、被覆管温度が制限値以内に入るための条件を見出す解析を実施した。 しかしながら、60YH₂-40BaI₂の燃焼に伴い多量の Xe が被覆管内に放出されてペレットの温度を上 昇させるため温度制限値を満足することが難しいと判断されたことから、LLFP 集合体の出力を MVP 解析と比較して見直した出力での評価を実施した。

図 3.4.2-1 高速炉核変換システム炉心 B

② 解析モデル

1) システムモデル

炉心を中心の制御棒を取り囲む6体から構成される燃料集合体をリング1として、順次リング2、3のように分割して RELAP5-3D で解析した。図3.4.2-1 に示している LLFP を装荷した集合体を解析する場合の各リングの集合体の種類を示す。第1列は、中心の制御棒を囲む6本の集合体で構成されている。

- 1) リング 1-6: 第1 列- 第6 列リング(内側炉心)
- 2) リング 7-8: 第7 列- 第8 列リング(外側炉心)
- 3) リング9:第9列、集合体内外側24ピンは⁹⁹Tc単体、内側37ピンは60YH2-40BaI2
- 4) リング 10-11: 第 10 列一第 11 列 Cs₂CO₃
- 5) リング 12(第 12-14 列): Cs₂CO₃
- 6) リング 13 (第 15 列) : Cs₂CO₃
- 7) リング14:制御棒を1つにまとめた流路

解析モデルを図 3.4.2-2 に示す。炉心は、全燃料集合体、ブランケット集合体、反射体および 制御棒を模擬したモデルである。熱輸送系は、「もんじゅ」の 3 ループを模擬しており、中間熱 交換器(IHX)の2次側流量と入口温度を境界条件として解析するようになっている。また、燃料の外側の集合体間熱移行に関しても同時に解析している。本解析モデルは、「もんじゅ」の45%出力状態で実施されたタービントリップ試験時に得られた炉心出口温度の計測結果で解析モデルの妥当性を確認した。図3.4.2-3に「もんじゅ」で計測された炉心出口温度と解析結果の比較を示す。解析結果は、集合体内のピーキングや誤差を考慮しない結果であり、計測結果をほぼ再現する流量配分が設定できていることが分かる。計測結果が開示されていない10リング以降の遮蔽体出口の温度は、JAEAの解析結果よりも高くなっているが、これはRELAP5で集合体間熱移行が解析できるように解析モデルを工夫しており、炉心部中央部からの熱が周辺に移行している結果が解析されているためであると解釈している。

2) 燃料部モデル

燃料の下側に配置してあった軸方向ブランケット部は、燃料から切り離した 61 ピンの太径 Zr 短尺集合体で置き換えて照射する。このため、燃料部と LLFP 装荷部の集合体解析モデルは、図 3.4.2-4 に示すように、複雑になる。燃料が装荷される流路は、入口部、Zr 部、燃料部、ガスプ レナム部、上部遮蔽体部、ラッパー管の 6 種類のヒートストラクチャーで模擬している。これは、 熱の授受の機構が異なる部位毎に部品を分けているためである。このため、流体とヒートストラ クチャーの位置関係を間違わないようにする細心の注意が必要である。

第9リングの集合体の出力分布概略を図 3.4.2-5 に示す。元々の集合体は、61 ピンのブランケット集合体であったが、それを 37 ピンの 60YH₂-40BaI₂ で置き換え、外側に Tc 単体 24 ピンを配置した集合体になっている。91 ピン集合体の場合には、ピン直径を細くし、61 本の 60YH₂-40BaI₂と Tc 単体 30 本の集合体としてピン1本当たりの線出力を低下させている。集合体出力は、燃焼初期(BOC)から燃焼末期(EOC)にかけて徐々に減少する。周囲に配置した Tc ピンの出力は高くなり、平均出力の2倍以上の出力になっているため、このピンを抜き出して解析し、健全性を評価する。61本集合体の場合、ピン最高出力は、5.735kWであり、ピーキングに換算すると2.41に相当する。また、60YH₂-40BaI₂は、出力が低いものの、燃焼に伴って熱伝導率の悪い Xe が多量にギャップ部に放出されギャップ部で大きな温度上昇があるため、ピンの中心温度に注意する必要がある。このピンの最高出力は、燃焼初期には1.782kW であり、燃焼末期に Xe が大量に発生した時点では1.604kW になり、ピーキングに換算すると0.69 に相当する。第9リングより外側のリング10-15 には全て Cs₂CO₃,(¹³⁵Cs),が装荷されている。

3) LLFP 熱伝導率

LLFP を装荷するペレットは、LLFP と減速材を混合して構成されている。このため、混合材料の熱伝導率を評価してペレットの温度計算をする必要がある。60YH₂-40BaI₂の等価熱伝導率は、 分散系化合物の熱伝導式[1]を使って推定した。

$$k = \frac{k_p k_c}{\left(1 - \phi_p\right) k_p + \phi_p k_c} \tag{1}$$

kp: LLFP の熱伝導率 [W/m K]

*k*_c: 減速材の熱伝導率 [W/m K]

3.4-28

 ϕ_p : LLFP の体積割合

また、比熱は、次の様に LLFP の質量割合 x に基づき評価した。

$$Cp = x Cp_p + (1-x) Cp_c$$
⁽²⁾

$$x = \frac{\phi_p \rho_p}{\left(1 - \phi_p\right)\rho_c + \phi_p \rho_p} \tag{3}$$

ρ_p: LLFP の密度 [kg/m³]

ρ_c: 減速材の密度 [kg/m³]

Cpp: LLFP の比熱 [J/kg K]

Cpc:減速材の比熱[J/kg K]

4) 混合気体熱伝導率

第9リングの集合体内の 60YH₂-40BaI₂は、燃焼によって Xe ガスが発生するため、初期に封入 した He ガスと Xe ガスが混合した場合の気体熱伝導率を評価する必要がある。Udoetok[2]による と、混合気体の熱伝導率は、

$$k_{mix} = 0.5 \frac{k_1 k_2}{X_1 k_2 + X_2 k_1} + 0.5 (X_1 k_1 + X_2 k_2)$$
(4)

で与えられる。ここで X_i は i 気体のモル分率、 k_i は i 気体の熱伝導率である。上式の妥当性 は、種々の混合気体を用いた計測結果と一定の誤差範囲で一致することが確認されている。He の 熱伝導率は、Ordzhonikidze [3]の計測値 Xe の熱伝導率に関しては、Jain [4]の式を用いて算出 した。

本評価では、基本ケースとして初期に 2MPa で封入した He と核分裂で生成された Xe との混合 比が 20%:80%になった状態を考えている。Xe は熱伝導率が低く、ギャップコンダクタンスを 非常に低下させ 60YH₂-40BaI₂ ピンのペレット中心温度を高めてしまうため、特に注意する必要が ある。

燃料被覆管ギャップ内の気体熱伝導率は、安全評価で使用されるギャップコンダクタンス 1000BTU/ft²h^oF(= 5.678kW/m²K)相当の熱伝導率を用いて解析した。

図 3.4.2-2 RELAP5-3D による解析対象高速炉核変換炉心の解析モデル

図 3.4.2-3 「もんじゅ」タービントリップ試験時の炉心出口温度と解析結果

図 3.4.2-4 燃料部のモデルと LLFP 集合体のモデル

図 3.4.2-5 第9リングの LLFP 集合体出力分布

③ 解析結果

¹²⁹IのLLFP ピンを取り囲むように ⁹⁹Tc ピンを配置したことによって、炉心全体の出力分布は、 図 3.4.2-6 に示すように、もともとの炉心と大差ない出力になっており、LLFP を装荷したことに よる隣接ドライバーのスパイクは見られていない。しかしながら、燃料下部に流路の狭い太径 61 ピンの短尺集合体を入れたことによって炉心全体の流動抵抗が増加して、図 3.4.2-7 に示すよう に LLFP 炉心の集合体流量が少し減少する。この条件で、燃料上端位置の被覆管の肉厚中心温度 を集合体の局所ピーキングを考慮して評価すると、図 3.4.2-8 に示すような結果になり、被覆管 温度が温度制限値内で上昇している。ピーキングは、以下のように設定している。

- 1) 出力誤差:1.02
- 2) リング 1-7 燃料集合体の局所ピーキング: 1.208
- 3) LLFP 炉心のリング8 燃料集合体の局所ピーキング: 1.22
- 4) リング9のTc ピンのピーキング: 2.04

Tc ピンのピーキングは、2.04 と大きいため、このピンだけを切り出した1ピン解析を行った。 ワイヤースペーサの効果で、周辺ピンの流速が大きくなるが、流量は平均値で与え、出力誤差と ピーキングを考慮した大きな出力を1ピンに与えて解析した。誤差を考慮した被覆管最高温度と ペレット中心温度はそれぞれ、約456℃、約504℃となり、健全性上全く問題ない状況である。

同じ燃料集合体には、YH₂-BaI₂ ピンが装荷されているため、このピンの中心温度が制限値である711℃より低くなることを確認した。このペッレットからは、燃焼に伴い熱伝導率の低い Xe が 放出されるため、初期に He ガスを 2 MPa で封入し、3 年の燃焼で 10%が変換され、Xe が発生し て He 分圧が 20%になる場合を想定した。ペレットー被覆管間のギャップは、通常の燃料より狭 い 0.07 mmを仮定した。この時の混合気体熱伝導率でギャップ部の熱伝達を考えた場合、YH₂-BaI₂ ピンの中心温度は、図 3.4.2-9 に示すように、温度制限値以下になる。燃焼とともにペレットも 変形して被覆管に接触する可能性もあるが、初期のギャップが保存されると仮定した場合の結果 である。ターゲットピンの出力は、燃焼初期の 1.782 kW から燃焼末期にかけて徐々に減少し、 最終的には 1.604kW となる。初期は、He 濃度が高いため、ギャップの熱伝達が大きく、末期に は、Xe が多くなりギャップの熱伝達が悪くなる。

出力に誤差を考慮した場合の解析結果を図 3.4.2-9 に示している。燃焼の結果出力が低下した ことを考慮して、He と Xe の濃度費が 20:80 になった場合のペレット中心温度は、約 709℃と制 限温度範囲に入る。しかしながら、より裕度をもって燃焼させるためには、最大 1.8 mmまでの中 心空孔を設けることによって、688℃と制限温度に対して約 23℃の裕度となる。

図 3.4.2-7 炉心全体の集合体流量比較

図 3.4.2-8 炉心全体のピーキングを考慮した被覆管温度評価 (リング 1-7:ピーキング 1.208、リング 8:ピーキング 1.22、リング 9 の Tc ピンはピーキング 2.44 および出力誤差 1.02 を考慮して被覆管温度を評価)

図 3.4.2-9 出力誤差 1.02 を考慮した YH₂-BaI₂ ピンの中心温度 (中心空孔なし燃焼末期 He: Xe=20%:80%モル分率時、中心空孔 1.8 mm燃焼末期 He:Xe=20%:80%、および中心空孔なし燃焼初期 He100%のケース)

④ まとめ

炉心全体の被覆管の最高温度は、炉心中央部が最高になり、出力誤差と集合体内ピーキングを 考慮した場合 663.8℃である。被覆管の温度制限は、PNC316 で 675℃、PNC1520 で 700℃であるた め、ブランケットを LLFP 集合体で置き換えて照射しても駆動炉心の健全性には問題を生じない。 一方、第9リングに装荷される YH₂-BaI₂ のピンは、ペレット中心温度がギャップ部のガス組成に 左右され、初期に 2MPa で封入した He (100 モル%) が発生した Xe ガスで薄まって照射で約 20% に減少するまでは、温度制限値以内で照射できる。このペレットに最大 1.8 mmの中心孔を設けた 場合には、約 13℃前者のケースよりも余裕をもって照射が行える。また、初期には、ピン出力が 高いがギャップは He 濃度が高いため、燃焼末期よりはペレット中心温度には余裕がある。

参考文献

[1] 山田悦郎、分散系混合物の有効熱伝導率、Netsu Bussei, 3, 2 (1989), 78-83.

[2] E.S. Udoetok, Thermal conductivity of binary mixtures of gases, Frontiers in Heat and Mass Transfer, 4, 023008, (2013), 1-5.

[3] S. Ordzhonikidze, Temperature dependence of thermal conductivity of helium, Translated from Inzhenerno-Fizicheskii Zhurnal, 32, 5, (1977), 822-824.

[4] P.C. Jain, The prediction of the thermal conductivity of xenon, J. of Physics D: Applied Physics, 11, (1978), 2371-2373.

3.4.3 安全性(再委託先:東京都市大学) 【H30-R1】

(1) 平成 30 年度の実施内容および成果

ターゲット集合体ピンの破損を想定し、減速材漏出による炉心特性の変化を評価し安全性を確認するため、減速材が分離・放出することによる挿入反応度および出力分布の評価を行った。

ターゲット集合体ピンの破損により検討対象となる事象を抽出し、代表事象として2項目を選定し解析を実施した。一つは、LLFPターゲットピンが破損して炉心部へ水素・重水素が混入した場合であり、投入反応度は4 ¢ と小さいことが分かった。他の一つは、破損した減速材により流路閉塞が起こる場合であり、YH₂減速材では当該集合体の燃料棒出力ピークは過出力係数1.16を超えるが、隣接燃料集合体では制限内であることが分かった。

(2) 令和元年度の実施内容および成果

最適化炉心についてターゲット集合体ピンの破損を想定[3.4.3-1]し安全性に影響を与えると 考えられる3項目について安全性の評価を行った。また、LLFP ターゲットピンの破損検出方法の 概念を検討し提案を行った。

①安全性に影響する原因・事象の想定

もんじゅの許認可[3.4.3-2]、新規制の考え方[3.4.3-3]を参考に、LLFP ターゲットピン(以下、 LLFP ピンと称する)を内包する LLFP ターゲット集合体(以下、LLFP 集合体と称する)を含む高 速炉の安全性に影響する原因と想定される事象を検討した。

LLFP 集合体を含む高速炉は、表 3.4.3-1 に示すもんじゅの許認可で想定された、運転時の異常 な過渡変化、事故、技術的には起こるとは考えられない事象に加えて、LLFP ピンを起因とした安 全性に影響する事象を考慮する必要がある。表 3.4.3-2 に LLFP ピンを起因として安全性に影響 すると想定される事象とその影響を示す。

1) LLFP ターゲットピン内のペレット移動

表 3.4.3-1 に示す燃料スランピング事故と同様に、偶発的に LLFP ピン内のペレットが移動す ることを想定する。この場合、LLFP 集合体が炉心周辺部に配置されていることから、反応度の影 響は小さいと考えられる。

一方、LLFP 集合体周辺部の LLFP ピン内でペレットが移動した場合、LLFP 集合体内で減速された熱中性子が隣接する燃料集合体に直接飛来し、サーマルスパイクにより局所的に出力が上昇する可能性もある。

そこで、LLFP 集合体周辺部の LLFP ピンのペレット間に隙間が生じた場合の隣接燃料集合体の サーマルスパイク(局所的な出力上昇)を、検討対象として選定する。

2) LLFP ターゲットピンの破損(LLFP 流出)

LLFP ピンの破損に伴い、LLFP が Na 中に流出した場合、通常時被ばくや1次冷却材漏えい事故 (Na 火災)等の被ばく評価に影響する。LLFP は崩壊定数が小さいので被ばくに対する影響は小 さいと考えられ、検討対象より除外する。

3.4 - 36

3) LLFP ターゲットピンの破損(減速材流出)

LLFP ピンが破損すると、減速材である水素化イットリウム、重水素化イットリウム(以下それ ぞれ、YH₂、YD₂と略す)と解離した水素、重水素(以下それぞれ、H、D と略す)が Na 中に流出 する可能性がある。LLFP ピンから Na 中に流出した気体の H₂、D₂ は大部分がそのままカバーガス 中に放出されると考えられるが、一部は Na に融解して冷却系内を循環して再び炉心に流入する と考えられる。この場合、以下に示す a) 項から f) 項の影響があると想定される。

a) LLFP 核変換効率の低下

減速材の流出により、LLFP 集合体における核変換効率が低下する。しかし、反応度挿入などの 炉心の安全性への影響は小さいと予想され、検討対象より除外する。

b) 隣接 LLFP ターゲットピンへのガスジェット

Na 中に流出される解離した H、D がジェット形状の気泡を形成し隣接する LLFP ピンに到達し て、除熱性能(熱伝達率)の低下などで、隣接 LLFP ピンが破損伝播する可能性がある。しかし、 LLFP ピンの発熱(線出力)が小さいこと、「局所事故に関する研究の現状と展開」[3.4.3-4]で 燃料ピンを対象としたガスジェットの熱的影響や機械的効果により破損伝播は生じないとされて いることから、本事象の影響は小さいと予想され、検討対象より除外する。

c) 減速材、Na 化合物による流路閉塞

Na 中に流出される減速材や解離した H、D と Na の Na 化合物(NaH 等)が、中間熱交換器や循環ポンプ、燃料集合体で流路閉塞する可能性がある。表 3.4.3-1 で想定しているもんじゅの閉塞物は構造材であるが、減速材が閉塞した場合は中性子の減速効果によるサーマルスパイクによる局所過熱の影響を評価する必要がある。このため、本事象を検討対象として選定する。

d) 中間熱交換器の伝熱性能の低下

Na 中に融解できる H、D の量は、もんじゅのコールドトラップの設計[3.4.3-5]により次式に示 す Vissera らの式で表わすことができる。

logC = 6.067 - 2880/T

ここで、*C*:水素融解度(Wppm水素)、*T*:Na 温度(K) を示す。

本式に従い中間熱交換器の熱交換により Na 温度が低下すると、原子炉容器上部プレナムにお いて Na 中に融解した H、D が気体となり、中間熱交換器の伝熱性能を低下させる可能性がある。 但し、直接、炉心性能に影響しないため、検討対象より除外する。

e) 炉心部への水素・重水素の混入

Na に融解した H、D および中間熱交換器で気体となった H₂、D₂ が、冷却系内を循環して炉心に 流入し、反応度および中性子の減速効果による炉心出力に影響することが考えられる。このため、 本事象を検討対象として選定する。

f) 炉心部への減速材の混入

減速材が冷却系内を循環して炉心に流入し、燃料集合体内の燃料ピンの近傍を通過する際に、 中性子の減速効果により局所的に出力が上昇することが考えられる。本事象の影響は、燃料集合 体内に減速材がとどまる流路閉塞に比べると、局所的な出力上昇の影響は小さいと予想され、検 討対象より除外する。

4) 減速材の重水素、水素のトリチウム化

原子炉内のLLFP 集合体中に内包する減速材中のD、H が中性子捕獲反応により、トリチウムを 生成し、被ばくに影響することが予想される。

もんじゅの長期運転予測[3.4.3-6]より、30 年間の炉心(燃料および制御棒)からのトリチウム放出累計量は、7,400 TBq と予想されている。一方、ブランケット集合体内に重水素化ジルコニウム、水素化ジルコニウム等を設置する検討[3.4.3-7]において、ブランケット集合体取出し時(123 日×5 バッチ=1.685 年)のトリチウム放射能はそれぞれ 4.2E+11 Bq、1.5E+9 Bq(減速材割合 90 %のピン、18本/集合体設置の場合)が示されている。Zr と Y の違いはあるが D、H 質量当たりのトリチウム生成量は同じとして、30 年間の LLFP 集合体からのトリチウム放出累計量を求めると、次式に示すように最大約 21 TBq と予想される。

炉心A: 4.2E+11×(30/90)_a×(930/1580)_b×(61/18)_c×(2/1.6)_d×(30/1.685)_e=6.2E+12

炉心 B: $[4.2E+11 \times (100/90)_{a} \times (650/1580)_{b}+1.5E+9 \times (60/90)_{a} \times (930/1580)_{b}]$

 $\times (37/18)_{\rm c} \times (2/1.6)_{\rm d} \times (30/1.685)_{\rm e} = 8.8E+12$

炉心 C: 4.2E+11×(60/90) $_{a}$ ×(1580/1580) $_{b}$ ×(61/18) $_{c}$ ×(2/1.6) $_{d}$ ×(30/1.685) $_{e}$ =2.1E+13

計算式中の()。は減速材割合、()。はピン長さ、()。はピン本数、()。は減速材中のD、Hの化学量 論比、()。は運転長さの補正係数を示す。

これは、前述のもんじゅ炉心からのトリチウム放出累計量の約 0.28 %に相当し、減速材を使用することによる被ばくに与える影響は小さいと予想され、検討対象より除外する。

詳細検討事象の選定と判断基準

1) 詳細検討事象の選定

表 3.4.3-2 に示すように、安全性に関して LLFP 集合体を起因とする想定事象のうち、詳細に 影響検討が必要と考えられる事象として、以下の3事象を選定した。

・LLFP ターゲットピン内のペレット移動(隣接集合体のサーマルスパイク)

・LLFP ターゲットピンの破損(減速材による流路閉塞)

・LLFP ターゲットピンの破損(炉心部への水素・重水素混入)

2) LLFP ターゲットピンの破損本数と解析対象炉心

「局所事故に関する研究の現状と展開」[3.4.3-4]によると、表 3.4.3-3 に示すように 1984 年 までに全世界で約 350,000 本の高速炉用燃料が照射され、通常運転用燃料ピンの破損は 300 本以 下である。これより燃料ピンの破損率を求めると 0.086 %以下である。この破損割合を発熱量が 小さい LLFP ピンに適用することには議論が必要であるが、仮に適用すると、LLFP ピンが 2 本同 時に破損する確率は IAEA の将来炉の安全目標[3.4.3-8][3.4.3-9]である 1×10⁻⁵ 以下となる。 よって、LLFP ピンの破損想定本数は1本とする。

表 3.4.3-4 に代表炉心の LLFP ピン内の H、D モル数と質量を示す。中性子減速効果が大きい H を放出するのは炉心 B のみであり、最も放出する H、D のガスモル数が多いのも炉心 B である。 よって安全性の詳細検討する代表炉心は炉心 B とする。

3.4 - 38

3) 水素、重水素の解離速度

減速材である YH₂、YD₂に対する H、Dの解離温度、解離速度に対する知見は見当たらない。

高速増殖炉サイクル実用化研究開発プロジェクトでは、ZrHx を用いた炉心径方向遮蔽体の設計 検討[3.4.3-10]が行われており、500 ℃を超えると急激に水素解離が大きくなるとして、遮蔽体 温度を 500 ℃以下に制限している。また、ZrHx の解離に関する研究[3.4.3-11]における、平衡 解離圧と温度、H/Zr 比の相関では、546 ℃を超えると急激に水素解離が進む知見が示されてい る。一方、ハフニウムを用いた水素化物中性子吸収材(以下、HfHx と略す)を用いた制御棒の研 究[3.4.3-12]において HfHx の水素解離の試験が行われ、試験体を高温で 10 時間保持した温度勾 配下試験で、700 ℃で 0.003 mol/h の水素解離速度になる結果が得られている。

現時点において、YH₂、YD₂に対する解離量および解離速度が不明であるため、保守的に YH₂や YD₂内のHやDは完全に解離するとし、炉心Bで破損を想定する LLFP ピン内の 5.2 モルが Na 中に 放出されるとする。

今後、H、Dを用いた減速材(YH₂、YD₂)の解離温度と解離速度、およびLLFP ピンの温度の確認 が必要である。

4) 燃料ピン健全性の判断基準

燃料破損の判断は、もんじゅの設置許可申請書[3.4.3-2]に記載された運転時の異常な過渡変 化の判断基準である以下とする。

・燃料温度融点(2,650 ℃)未満

・被覆管肉厚中心最高温度 830 ℃以下

なお、流路閉塞以外は、燃料出力が過出力係数(116%)以下であれば、この判断基準を満足 する。流路閉塞は、燃料出力が過出力係数を超えないことと、もんじゅ設置許可申請書に記載さ れた流路閉塞時の被覆管肉厚中心最高温度と燃料出力より、減速材閉塞時の被覆管肉厚中心最高 温度を求めて、判断基準を満足することを確認する。

③ 安全性評価

1) LLFP ターゲットピン内のペレット移動(隣接集合体のサーマルスパイク)

炉心 B の LLFP 集合体は、集合体中心の減速材(YH₂) 60 %を含む LLFP (BaI₂-YH₂) ピン 37 本 と、その周囲の減速材を含まない LLFP (Tc) ピン 24 本で構成される。集合体内部の LLFP (BaI₂-YH₂) ピンで減速された熱中性子の隣接燃料集合体への影響(サーマルピーク)は、集合体周辺 の LLFP (Tc) ピンにより緩和されている。

そこで、本評価では、炉心 B の LLFP 集合体の炉心燃料に隣接する LLFP(Tc) ピンのペレットが 移動(喪失)した場合の、隣接燃料集合体の出力上昇を評価する。

a) 解析条件

燃料集合体に隣接する LLFP 集合体のコーナから 1 番目 LLFP(Tc) ピンまたは 2 番目 LLFP(Tc) ピン内のペレット移動(解析では被覆管内の全ペレットを除外)を想定する。

隣接燃料集合体は、LLFP 集合体内の移動ピン近傍の5燃料ピンの出力を評価する。 解析は以下の手法を用いる。

・計算コード:連続エネルギーモンテカルロ法コード MVP-3.0

- ・計算モデル:図3.4.3-1
- ・核データライブラリ: JENDL-4.0
- ・中性子ヒストリ数:2,000万以上

b) 解析結果

図 3.4.3-2 に解析結果を示す。

LLFP(Tc)ピン内ペレット移動前の LLFP 集合体に隣接する燃料集合体において、コーナ部の燃料ピンの出力が最も高い。

燃料集合体に隣接する LLFP 集合体のコーナから 1 番目 LLFP(Tc) ピン内のペレット移動、2 番 目 LLFP(Tc) ピン内のペレット移動により、隣接燃料集合体のコーナ部の燃料ピンの出力は約 106 %、約 105 % (いずれも切り上げ) まで上昇する。また、隣接燃料集合体のコーナ部から 2 番目以降の燃料ピンの出力も上昇するが、LLFP ピン内のペレット移動時におけるコーナ部の燃料 ピンの出力以上となることはない。

c) 燃料ピン健全性評価

炉心 B の LLFP 集合体の内、隣接する燃料集合体に影響すると考えられる LLFP(Tc)ピンのペレ ット移動を想定しても、出力ピークが現れる燃料集合体は炉心周辺にあり出力が低いためコーナ ーピンの相対出力は 1.0 より十分小さいが、安全側に 1.0 だとしても出力の増大は 6 %であるの で最大線出力燃料ピンの 116 %を超えることはない。したがって、健全性が維持される。

2) LLFP ターゲットピンの破損(減速材による流路閉塞)

図 3.4.3-3(a)に Na 中に放出された LLFP ピン中の減速材(粒子)に加わる力の計算モデルを示 す。沈降力<流体力の場合は減速材が集合体外へ放出される。図 3.4.3-3(b)に計算条件を示し、 図 3.4.3-3(c)に計算結果を示す。図 3.4.3-3に示すように、LLFP 集合体の流量 4.56 kg/s では、 LLFP ピン破損により Na 中に放出された減速材は集合体外に流出する。

LLFP ピン1本が破損し、Na 中に放出された減速材(YH₂)が1次系内を循環し、炉心燃料集合体中で流路閉塞した場合の影響を評価する。

a) 解析条件

LLFP 集合体外に放出された減速材は 1 次系内では沈降せずに、全燃料集合体に分散して混入 し、最も発熱が高い炉心中心部で閉塞するものとする。解析対象炉心として、中性子減速効果が 大きな YH₂を内包する炉心 B とし、YH₂による閉塞を想定する。なお、評価上考慮する安全係数と して、解析する集合体に混入する減速材の量を平均の 2 倍とする。

表 3.4.3-5 に、閉塞の形態として 3 本の燃料ピンで囲まれた 1 サブチャンネルが閉塞する場合 と、1本の燃料ピンの周辺6 サブチャンネルが閉塞する場合の閉塞高さを求めた結果を示す。1 サ ブチャンネル閉塞の場合は閉塞高さ 47 mm、6 サブチャンネル閉塞の場合は閉塞高さ 8 mm とする。 解析は以下の手法を用いる。

- ・計算コード:連続エネルギーモンテカルロ法コード MVP-3.0
- ・計算モデル:図3.4.3-4
- ・核データライブラリ: JENDL-4.0
- ・中性子ヒストリ数:2,000 万以上

b) 解析結果

表 3.4.3-6 および図 3.4.3-5 に解析結果を示す。

中性子の減速効果が高い YH₂ が燃料集合体の 1 サブチャンネルに閉塞した場合のピーキング係数は 103 %、6 サブチャンネルに閉塞した場合のピーキング係数は 112 %まで上昇する結果となった。

もんじゅの設置許可申請書[3.4.3-2]によると、流路閉塞時(出力上昇なし)の被覆管肉厚中 心最高温度は約 730 ℃である。炉心入口温度 397 ℃と解析結果であるピーキング係数を用いて、 YH₂が燃料集合体の 1 サブチャンネルまたは 6 サブチャンネルに閉塞した場合の被覆管肉厚中心 最高温度をもんじゅの結果を参照して求めると、それぞれ約 740 ℃(=(730-397)×1.03+ 397)、約 770 ℃(=(730-397)×1.12+397)となる。

c) 燃料ピン健全性評価

炉心 B の LLFP 集合体の内、中性子減速効果が大きな LLFP (BaI₂-YH₂) ピンの破損により、YH₂ による燃料集合体の流路閉塞を想定しても、燃料ピンのピーキング係数は過出力係数(116 %) を超えることはなく、被覆管肉厚中心最高温度も制限値(830 ℃)以下であるため、燃料ピンの 健全性は維持される。

3) LLFP ターゲットピンの破損(炉心部への水素・重水素混入)

LLFP ピンの破損により解離し原子炉容器上部プレナム温度でNa中に融解したH、Dが、炉心入 ロプレナムで一部が気体に戻って、内側炉心と外側炉心(高圧プレナムに接続)に均一に混入し た場合の影響を評価する。

a) 解析条件

気体が入口プレナム等に蓄積されて、一過性で炉心を通過する事象は、表 3.4.3-1 で示す気泡 通過事故と同様であるため、ここでは、連続的に炉心を通過すると想定する。

解析対象は、中性子の減速効果が高い YH_2 を減速材として使用している炉心 B とする。なお、 炉心Bには YD_2 も減速材として装荷されているため、 H_2 気泡と D_2 気泡が混入した場合を解析する。

表 3.4.3-7 に解析条件を示す。炉心部では、H₂換算で 0.0034 kg (1.7 mol)の気泡となって、 炉心部を通過する。炉心部の圧力を 0.468 MPa (カバーガス圧 0.155 MPa+液頭 0.070 MPa+炉心 圧損の半分 0.243 MPa)、温度を 463 ℃として、気泡体積を求めると 0.023 m³となる。これは、 約 3.5 %のボイド率に相当する。

解析は炉心特性のボイド反応度計算と同じ以下の手法を用いる。

- ・解析手法:国内高速炉の標準的な核計算手法(CITATION、厳密摂動理論)
- ・計算体系: 全炉心 2 次元 RZ 体系
- ・計算に用いるエネルギー群構造:79 群(JENDL-4.0 ベース)
- ・ 炉心のボイド率:内側炉心および外側炉心(ブランケット含まず)の冷却材の4%
- ・ボイドの流体:パラメータ(Na、H₂、D₂)
- b) 解析結果

表 3.4.3-8 に解析結果を示す。炉心部の Na が 4 %ボイド化すると、約 2.9 ¢の反応度が挿入 される。4 %の H₂ボイドの場合は、約 3.3 ¢の反応度が、4 %の D₂ボイドの場合は、約 3.0 ¢の 反応度が挿入される。Na のボイド化、H₂ボイド混入、D₂ボイド混入の反応度の違いは、水素・重

3.4-41

水素により、中性子スペクトルが軟化した効果と考えられるが、混入する水素・重水素量はわず かであるため、その影響も小さい。

表 3.4.3-8 に反応度挿入による炉心出力を次式の即発跳躍近似で求めた結果も併記する。

 $P = P0/(1-\rho)$

ここで、反応度挿入後の出力、P0 は初期出力、ρは反応度(\$)を示す。即発跳躍後は炉心の反応度フィードバックにより出力が低下し且つ自動制御であれば制御棒挿入により所定の出力に回復するので、上式で求めた出力が反応度添加後の最大出力である。表 3.4.3-8 に示すように、炉心部への水素、重水素混入による、炉心出力は104%以下である。

c) 燃料ピン健全性評価

炉心 B の LLFP ピンが破損し、解離した H、D が炉心へ混入する事象を想定しても、炉心出力は 過出力係数(116 %)を超えることはなく、燃料ピンの健全性は維持される。なお、中性子束高 信号等で原子炉がトリップしないため、原子炉出力制御系により原子炉出力は所定の出力に調整 された後、運転中にコールドトラップにより Na 中の水素・重水素が除去されて、事故は終息す ると予想される。

④ LLFP ターゲットピンの破損検出方法の検討

もんじゅの破損燃料検出系(遅発中性子法、カバーガス法、タギング法)に加え、常陽で検討 されたレーザ共鳴イオン化質量分析法(RIMS: Resonance Ionization Mass Spectrometry)の実 績ともんじゅへの適用性の研究内容、および常陽の破損燃料検出を調査し、LLFP ピンの破損検出 方法を検討した。

1) もんじゅの破損燃料検出装系

図 3.4.3-6 にもんじゅの破損燃料検出系の概要[3.4.3-13]を示す。もんじゅの破損燃料検出系 は次の3系統で構成される。

- ・遅発中性子法破損燃料検出装置(DN法 FFD)
- ・カバーガス法破損燃料検出装置(CG法 FFD)
- ・タギング法破損燃料検出装置(FFDL)

a) 遅発中性子法破損燃料検出装置(DN法 FFD)

1次系配管近傍に各ループで独立した3 チャンネルの中性子検出系を設置し、破損燃料から Na 中に流出した核分裂生成物が放出する遅発中性子を検出して破損の有無を検知する。本検出装置 により、燃料破損警報または原子炉トリップ信号が発信される。

LLFP ピン破損時に Na 中に放出される減速材および LLFP は中性子捕獲に伴い高次同位体に移行 するが遅発中性子先行核の質量数はかなり高い[3.4.3-14]ため、遅発中性子が発生したとしても 極微量と予想され、DN 法 FFD で LLFP ピンの破損を検知することはできない。

b) カバーガス法破損燃料検出装置(CG法 FFD)

破損燃料から 1 次系カバーガスへ漏えいした核分裂生成物 [⁸⁸Kr (2.84 h)、¹³⁸Xe (14.08 ms)] からの β 線または γ 線を検出して、破損の有無を検知する。本装置より、燃料破損警報が発信 され、タギング法破損燃料検出装置 (FFDL) が起動して、破損燃料集合体を同定する。

LLFP ピン破損時に CG 法 FFD で検知可能なガスが放出するかが課題となる。後述のタギング法 FFDL で使用するタグガスの放射化が常陽の燃料破損模擬試験で確認されており、タグガスと組み 合わせることで、CG 法 FFD で LLFP ピン破損を検知できるとの見通しがある。今後、常陽の運転 再開に伴い、燃料破損検知に関する知見の蓄積が必要となる。

c) タギング法破損燃料検出装置(FFDL)

図 3.4.3-7 に FFDL の系統構成図を示す。あらかじめ燃料集合体の燃料ピンに希ガス同位体で 構成するタグガスを封入しておき、CG 法 FFD の燃料破損警報により起動し、燃料破損時に放出さ れるタグガスを検出して、破損した燃料の位置を検知する。検知された破損集合体位置は、中央 制御室で表示される。

タグガスは、炉内に長期間置かれるため、中性子や γ 線によって変化しにくい安定核種として、 ⁷⁸Kr、⁸⁰Kr、⁸²Kr、¹²⁶Xe、¹²⁹Xe の希ガス安定同位体を使用する。もんじゅでは、質量分析計を用い て、安定同位体の比である⁷⁸Kr/⁸⁰Kr(11 種類)、⁸²Kr/⁸⁰Kr(4 種類)、¹²⁶Xe/¹²⁹Xe(9 種類)を分析す るため、270 種類の組み合わせを準備した。

集合体数は、燃料集合体 198 体(内側炉心集合体 108 体、外側炉心集合体 90 体)、LLFP 集合体 52 体の、合計 250 体であるため、もんじゅで準備した 270 種類のタグガスで LLFP ピン破損を 生じた LLFP 集合体を検知することは可能である。

2) レーザ共鳴イオン化質量分析法(RIMS)の利用

「もんじゅ」における高速増殖炉の実用化のための中核的研究開発[3.4.3-15]において、常陽 で導入を検討している RIMS[3.4.3-16][3.4.3-17]をもんじゅに導入する検討が行われた。

図 3.4.3-8 に RIMS の概略系統、図 3.4.3-9 にもんじゅへの導入検討結果を示す。質量分析計 を用いるもんじゅのタギング法 FFDL では、活性炭吸着によるタグガス回収に 6 時間以上の時間 を要するが、RIMS ではより短時間でガス成分分析が可能となる。

カバーガス空間の大きなもんじゅへの適用に際して、希釈ガスによる性能確認が行われた。図 3.4.3-10 に希釈ガスの分析結果を示す。図 3.4.3-10 に示すように、希釈ガス(希釈率 1/893) でも性能劣化しない結果を用いて、RIMS のもんじゅへの適用性が検証された。

3) LLFP ターゲットピン破損の検出方法

もんじゅの破損燃料検出系を調査し、炉心の破損燃料集合体検知に用いられているタグガスを LLFP 集合体まで適用することで、CG 法 FFD で検知後にタギング法 FFDL または RIMS により LLFP ピン破損を検知できる見通しを得た。

一方、もんじゅのタギング法 FFDL に用いられるタグガスは高価であり、経済性の面で課題と なることも予想される。今後、常陽の運転が再開され破損模擬試験の知見が蓄積されれば、より 安価な放射性ガス封入と図 3.4.3-11 に示す常陽の Na シッピング法 FFDL でも LLFP ピン破損を検 知できる可能性も考えられる。

⑤ まとめ

安全性について、最適化炉心を対象に平成 30 年度に検討した LLFP ターゲットピン破損により 安全性に影響を与えると考えられる以下の 3 項目について安全性評価を実施した。

・LLFP ターゲットピン内のペレット移動(隣接集合体のサーマルスパイク)

・LLFP ターゲットピンの破損(減速材による流路閉塞)

・LLFP ターゲットピンの破損(炉心部への水素・重水素混入)

その結果、いずれも事象も燃料ピンの出力は過出力係数(116%)以下であり、燃料ピンの健 全性は維持できることを確認した。

また、LLFP ターゲットピンの破損検出方法について、もんじゅの破損燃料検出系と常陽に導入 が検討されている RIMS を調査した。その結果、タグガスの充填範囲を LLFP ターゲット集合体ま で拡張し、CG 法 FFD とタギング法 FFDL または RIMS の組み合わせを用いることにより、LLFP タ ーゲットピンの破損を検知できる見通しが得られた。

参考文献

- [3.4.3-1] 東京工業大学、平成 30 年度 文部科学省 国家課題対応型研究開発推進事業 原子力 システム研究開発事業 高速炉を活用した LLFP 核変換システムの研究開発 成果報告書、平 成 31 年 3 月
- [3.4.3-2] 日本原子力研究開発機構、高速増殖炉研究開発センター 原子炉設置許可申請書 (高速増殖原型炉もんじゅ原子炉施設)本文および添付資料(一~十一)、平成 18 年 10 月 変更
- [3.4.3-3] 日本原子力学会 新型炉部会、「研究開発段階発電用原子炉安全設計方針検討会」 報告書、2014年4月
- [3.4.3-4] 動力炉・核燃料開発事業団、局所事故に関する研究の現状と展開、PNC TN2410 87-002、1987年3月
- [3.4.3-5] 動力炉・核燃料開発事業団、コールドトラップ設計指針 コールドトラップ委員会 答申、PNC SN2410 79-21、1979 年 5 月
- [3.4.3-6] 核燃料サイクル開発機構、高速増殖原型炉「もんじゅ」における水素・トリチウム挙動-性能試験データによる解析コード(TTT9)の検証と定格運転予測評価-、JNC TN4400 99-002、平成11年3月
- [3.4.3-7] 東北大学、平成 21 年度 文部科学省 原子カシステム研究開発事業 高速増殖炉に おける炉心燃料とブランケット燃料の配置最適化手法の研究開発 成果報告書、平成22年3月
- [3.4.3-8] 内閣府原子力政策担当室、原子力発電所の事故リスクコストの試算、平成23年5月
- [3.4.3-9] IAEA、 "Basic Safety Principles for Nuclear Power Plants 75-INSAG-3"、INSAG-12、1999
- [3.4.3-10] 核燃料サイクル開発機構、ナトリウム冷却炉の炉心・燃料設計検討(MOX 燃料炉心) -2003 年度報告-、JNC TN9400 2004-039、2004 年 6 月
- [3. 4. 3-11] J. Am. Ceram, "Thermodynamics of the Zr-H System", Soc, 78 (12) 3323-28, 1995
- [3.4.3-12] 東北大学、平成 19 年度 文部科学省 原子力システム研究開発事業 水素化物中性 子吸収材を用いた革新的高速炉炉心に関する研究 成果報告書、平成 20 年 3 月
- [3.4.3-13] 日本原子力研究開発機構、「もんじゅ」タギング法破損燃料検出装置の性能確認(1)、JAEA-Technology 2014-045、2015年5月
- [3.4.3-14] 竹腰英子、黒井英雄、五十嵐信一、「総説〔49〕遅発中性子の核物理および炉物理 的研究の現状」、日本原子力学会誌 Vol. 14, No.7, 340-356、1972
- [3.4.3-15] 福井大学、平成 24 年度 文部科学省国家基幹研究開発推進事業 原子力システム研

究開発事業 「もんじゅ」における高速増殖炉の実用化のための中核的研究開発、平成25年3 月

- [3.4.3-16] 名古屋大学、核燃料サイクル開発機構、レーザ共鳴イオン化分光法を用いた FP ガ スモニタリングの基礎研究 -先行基礎工学分野に関する最終報告書 -、JNC-TY9400 2000-019、 2000 年 5 月
- [3.4.3-17] 核燃料サイクル開発機構、レーザ共鳴イオン化質量分析法(RIMS)を用いた Na 冷却型高速炉用破損燃料位置検出システムの開発 -「常陽」RIMS システムの設計 -、JNC-TN9400 2000-076、2000 年7月

表 3.4.3-1 もんじゅの許認可で想定した主に炉心に関する事象

区分	事象	
運転中の異常な過渡変化	未臨界状態からの制御棒の異常な引抜き	[3 ¢/s]
	出力運転中の制御棒の異常な引抜き	[3 ¢/s]
	制御棒落下	[-19 ¢]
	外部電源喪失	
事故	制御棒急速引抜事故	[7 ¢/s]
	燃料スランピング事故	[7 ¢]
	気泡通過事故	[20 Ø]
	冷却材流路閉塞事故	
	1次主冷却系循環ポンプ軸固着事故	
	1次冷却材漏えい事故	
技術的には起こるとは	局所的燃料破損事象	
考えられない事象	(燃料要素の局所的過熱事象)	
	(集合体内流路閉塞事象)	[流路面積の 3 分の
	2]	
	1次主冷却系配管大口径破損事象	
	反応度抑制機能喪失事象	
	(1 次冷却材流量減少時反応度抑制機能	喪失事象)
	(制御棒異常引抜時反応度抑制機能喪失	事象)
安全評価	重大事故	

高速増殖炉研究開発センター 原子炉設置許可申請書(高速増殖原型炉もんじゅ原子炉施設)本 文および添付資料(一~十一)、独立行政法人日本原子力研究開発機構、平成18年10月 変更 より

[]内は想定規模(挿入反応度、混入ガス量、閉塞範囲)

No	想定事象	想定される影響	定性的な検討結果等	詳細検討の要否
Θ	LLFP ターゲットピン内のペレット移動	反応度の挿入	影響は小さい	×
		隣接集合体のサーマルスパイク	LLFP 集合体設計依存	0
	LLFP ターゲットピンの破損			
Ø	(LLFP 流出)	被ばく評価への影響	影響は小さい	×
		隣接核種の放射化生成物への影響	安全性への影響は小さい	×
\odot	(減速材流出) 1)(固体/気体)	LLFP 核変換効率の低下	安全性への影響は小さい	×
	2) (気体)	隣接 LLFP ターゲットピンへのガスジェット	影響は小さい	×
	3) (固体)	減速材、Na 化合物による流路閉塞	減速材閉塞時の影響の確認が必要	0
	4) (気体)	中間熱交換器の伝熱性能の低下	炉心の性能に影響しない	×
	5) (気体)	炉心部への水素、重水素の混入	影響の確認が必要	0
	() (国体)	炉心部への減速材の混入	流路閉塞より影響は小さい	×
4	減速材の重水素、水素のトリチウム化	トリチウムによる被ばく量の増加	安全性への影響は小さい	×

表3.4.3-2 LLFP ターゲット集合体を起因とした安全性に影響する事象

PNC TN2410 87-002 より抜粋

表3.4.3-3 主要な高速炉における燃料の破損(主として運転用燃料)

1967~1982年の実績 合計83本のうち45本が開口 破損。破損率~0.17% 1973~1980年4月の実績 1975~1985年11月の実績 1970~1974年8月の実績 1977~1985年末の実績 籷 1964~1984年の実績 1982~1985年の実績 1973~1984年の実績 響 $\frac{1.1 \times 10^{-2}}{(1.5 \times 10^{-2})}$ 通算破損率 (b)÷(a), (%) $(1, 1 \times 10^{-1})$ $(6, 7 \times 10^{-9})$ $(1, 0 \times 10^{-2})$ $1, 1 \times 10^{-3}$ ~0.27 0.15 (0.28) 5 0 運転用燃料:44 0 (実験用燃料を含め 83) 開口破損:1 (ビンホール破損数 (モンホール破損数) (実験用燃料を含め 124) 0 (実験用燃料:3) 運転用燃料: 6 (実験用燃料: 2) ン回 (8体破損のみ) 樹 草 で い 数 () 鐵碼 ຂິ 2 2 48, 000 / 51, 900 NWd/t MMd/t) Mud/t 最高到達燃焼度 (at.%orMMd/t) ~120,000MMd/t 135, 000MWd/t 213, 000MWd/t 11. 6at. % (100, 000∼ 16.4at. % $100,000 \sim$ 10, 010 / 15, 621 験 萃 パ ソ 既對本数(3) ~110,000 $\sim 120,000$ ~ 30.418 $\sim 90,000$ $\sim 30,000$ > 11, 000 55, 000 5.84mm ~80%170(スミア密度) 325 グリッド 6. Omn 33. 5% TO(孔あきUO2) アイヤー 変智 5. 1mm 92%TB 61 ワイヤー (フォルテンモ切心) 慾 慾 6.3/5.5mm 93.5/93%TD 91/127 ワイヤー Ħ 虹檨 6. 55m 95 % TD 217 7 1 4 -1 4, 4mm 100 % TD 91 -416 5.8mm 90%TD 217 ワイヤ-围土 0000 0000 0000 0000 0000 0000 0000 BOR-60(ソ連) 実験炉 60MWth アェニックス (仏) 原型炉 568MMth EBR-I(米国) 実験炉 62,50Wth 嗫 FFTF(米国) 実験炉 400MWth ラブンディ(仏) 実験炉 40腑th 常调(日本) 実験炉 75/100MHth MK-1/MK-11 PFR(英) 原型炉 600Muth ሎ 原 P

No	項目	単位	検討条件
1	LLFP ペレット外径	mm	10.4
2	LLFP ペレット全長 (下部軸プランケット) (炉心部) (上部軸ブランケット)	mm	1, 580 (350) (930) (300)
3	イットリウム密度	kg/m^3	4, 472
4	イットリウム分子量	_	89
5	YH2分子量 (H2気体分子量)	_	91 (89+2) (2)
5	YD ₂ 分子量 (D ₂ 気体分子量)		93 (89+4) (4)

(a) 検討条件

(b) 検討結果(ガスモル数、ガス質量)

No	項目	単位	炉心 A	炉	ک B	炉心 C
1	減速材	_	YD_2	YH_2	YD_2	YD_2
2	LLFP ペレット長	mm	930	930	650	1,580
3	減速材割合	%	30	60	100	60
4	減速材体積	mm ³	23, 701	47, 402	55, 217	80, 532
5	イットリウム質量	bg	106	212	247	360
6	イットリウムモル数		1.2	2.4	2.8	4.1
7	ガスモル数		1.2	5.	2	4.1
8	ガス質量	kg	0.0048	0.0048	0.0112	0.0164
9	合計ガス質量	kg	0.0048	0.0	160	0.0164

No	項目	単位	値	備考
1	燃料ピン外径	mm	6.5	入力条件
2	ワイヤ外径	mm	1.32	入力条件
3	燃料配列ピッチ	mm	7.87	入力条件
4	減速材体積	mm^3	47, 402	表 3.4.3-4 より
5	燃料集合体数	本	198	入力条件
6	安全係数	_	2	入力条件

(a) 検討条件

(b) 検討結果(閉塞高さ)

No	項目	単位	1 サブチェンネル 閉塞	6 サブチャンネル 閉塞
1	集合体内の減速材体積	mm^3	479	479
2	閉塞部断面積	mm^2	10.23	61.36
3	閉塞部高さ	mm	47	8

表 3.4.3-6 LLFP ターゲットピン破損(減速材による流路閉塞)の解析結果

項目	1 サブチャンネル 閉塞	6 サブチャンネル 閉塞	参考(もんじゅ設 置許可)
燃料ピンピーキング係数	103 %(〇)	112 %(〇)	100 %(*1)
被覆管肉厚中心最高温度	740 °C (○)	770 °C (⊖)	730 °C

(注)評価条件:燃料ピンピーキング係数、○<116 %(過出力係数)≦×

被覆管肉厚中心最高温度、○<830 ℃≦×

被覆管肉厚中心最高温度=(730 ℃-397 ℃)×燃料ピン出力+397 ℃

397 ℃=炉心入口冷却材温度

(*1)被覆管肉厚中心最高温度評価のため100 %を仮定

No	項目	単位	炉心入口	炉心出口	備考
1	集合体内流路面積	mm	3, 636		入力条件
2	集合体本数	本	198		入力条件
3	炉心長	mm	930		入力条件
4	炉心部 Na 体積	m ³	0.670		
5	炉心部 Na 温度	°C	397	529	入力条件
6	炉心部平均 Na 密度	kg/m^3	841.0		at 463 °C
7	炉心部 Na 質量	kg	563	. 5	=0.670×841
8	最大H濃度	Wppm	5.87	11.9	
9	最大 H 量	kg	0.00331	0.00671	
10	炉心部水素気泡量	kg	0.0034		1.7 mol
11	炉心部水素気泡体積	m ³	0.023		at 0.468 MPa
12	炉心部ボイド率	%	3.5(切	0上げ)	0.023/0.670

表 3.4.3-7 LLFP ターゲットピン破損(炉心部への水素、重水素の混入)の解析条件

(注) Na 中に融解できる H の量は、次式に示す Vissera らの式で表わす

logC = 6.067 - 2880/T

ここで、*C*:水素融解度(Wppm水素)、*T*:Na 温度(K) を示す。

表 3.4.3-8 LLFP ターゲットピン破損(炉心部への水素、重水素の混入)の解析結果

検討ケース		挿入反応度(¢)	
評価部位	ボイド化のみ	水素ボイド混入	重水素ボイド混入
内側炉心	11.4	11.3	11.0
外側炉心	-8.6	-8.0	-8.0
合計	2.9	3. 3	3.0
炉心出力	103.0 %(〇)	103.4 %(〇)	103.1 %(〇)

(注)検討条件:内側炉心および外側炉心の4%がボイド化(ラッパ管外含む)

炉心出力最大値の近似式:P=P0/(1-ρ)

ここで、反応度挿入後の出力、P0 は初期出力、ρは反応度(\$)を示す。 評価条件:燃料ピンピーキング係数、○<116 %(過出力係数)≦×

図 3.4.3-1 LLFP ターゲットピン移動の解析モデル

隣接燃料集合体燃料ピン	ピーキング係	数(移動なしの最大	値で規格化)
	移動無し	上から1番目移動	上から2番目移動
コーナ部から1番目	1.000	1.053	1.042
コーナ部から2番目	0.933	0.969	1.007
コーナ部から3番目	0.942	0.941	0.982
コーナ部から4番目	0.923	0.939	0.999
コーナ部から5番目	0.945	0.949	0.970

図 3.4.3-2 LLFP ターゲットピンの移動による燃料ピンのピーキング係数解析結果

○減速材(粒子)に加わる力

- ・沈降力=粒子体積×(減速材密度-ナトリウム密度)×重力加速度
- ・流体力=抗力係数×粒子投影面積× 1/2×密度×流速²

流速=ナトリウム流量/ナトリウム密度/集合体流路面積 ○判断条件

- ・沈降力>流体力:集合体外へ放出無し
- ・沈降力<流体力:集合体外に放出

(a) 計算モデル

┃ 流体力

沈降力

減速材

(粒子)

		(b) 言	计算条件
項目	単位	値	パラメータ
ナトリウム温度	°C	397	・粒子径:0.01 mm~5 mm
ナトリウム密度	${\rm Kg/m^3}$	856.8	・ナトリウム流量
イットリウム密度	${\rm Kg/m^3}$	4472	:4.56 kg/s~0.99 kg/s
集合体流路面積	cm^2	29.48	
抗力係数(C _D)	—	実験式	アレンの実験式(機械工学便覧、A5-p.98-
		最小 0.44	99)

図 3.4.3-3 LLFP ターゲットピン破損時の減速材の挙動

図 3.4.3-4 LLFP ターゲットピンの破損(減速材による流路閉塞)の解析モデル

(a) 閉塞近傍燃料ピンの軸方向ピーキング係数

(b) 炉心中心の径方向のピーキング係数

図 3.4.3-5 LLFP ターゲットピンの破損(減速材による流路閉塞)の解析結果

図 3.4.3-6 もんじゅの破損燃料検出系

図 3.4.3-7 もんじゅのタギング法破損燃料検出装置の概要

図 3.4.3-8 レーザ共鳴イオン化質量分析法(RIMS)の概要

図 3.4.3-9 もんじゅへの RIMS の導入方法(提案)

図 3.4.3-10 希釈ガスを用いた RIMS の検出性能の確認

図 3.4.3-11 常陽の Na シッピング法破損燃料検出装置

3.5 核変換ターゲット集合体の構造設計(再委託先:東北大学)

3.5.1 集合体構造設計【H30-R1】

3.3 高速炉での核変換ターゲット集合体の配置、交換法で検討した結果を基にして、LLFP 核 種のピン構成、集合体構造の設計を行った。また、LLFP 核種を装荷したピンの温度評価、ピン 圧力評価を行い、健全性を確認した。

(1) LLFP 集合体の出力評価と温度評価 【H30-R1】

SCALE システムの XSDRN/ENDF-B7.0/中性子 238 群による 1 次元無限円柱体系で中性子束を求める。この中性子束を元に捕獲ガンマ線、中性子運動エネルギー、核変換により発生する崩壊熱、 炉心からの伝播ガンマ線を考慮して出力を求めた。[3.5-1]

1 核種装荷、径方向ブランケット第1層の装荷でピン仕様は、原型炉の径ブランケット燃料と 同一の φ 11.6mm、61 本/集合体を想定した線出力と集合体出力評価結果を表 3.5.1-1 に示す。 軸方向ピーキング(最高線出力/炉心部平均線出力の比)は 1.2 である。

さらに LLFP6 核種を装荷した3つの炉心を組み合わせた核変換システムにおいて検討をした結果、 流量配分を考えると LLFP 隣接する外側炉心集合体の出力ピーキングを大きくしないように、 LLFP 集合体に装荷する減速材としては、YD2が適切である。

但し、Iの装荷においては、核変換率を高めるために YH₂を用いることとした。LLFP 集合体の 隣接外側燃料集合体の出力ピーキングを抑えるために、Tc ピンを集合体内の周辺部に1層配置 することとした。その場合の隣接外側燃料集合体のピーキングは、ブランケット燃料集合体を装 荷している場合と同等に抑えられることが分かった。

このピーキングを抑えたことにより 3.4.2 項熱特性では流量配分は基本的には炉心流量は同等 となり、ブランケット燃料と同一の流量を流すことが可能となった。

1 核種の場合の被覆管制限目安温度を満足させるための冷却材必要流量について、最大出力ピンの出力 Ppin に対して冷却材低圧比熱と被覆管最高温度制限目安値に対する冷却材温度上昇量で除することでピン1本当たりの流量を求め、それを集合体本数 61 本と周辺流れ効果による流量増加分を 1.1 倍することで算出した。[3.5-2]

表 3.5.1-1 にその結果を示す。これは径方向ブランケット第1層の冷却材流量 4.6kg/s[3.5-3] に比較して、とくに YD₂ 減速材を用いた場合には非常に低い必要流量となり流量冷却材温度は殆 ど上昇しない結果となる。さらに、3.3.1(4)項で示す3つの炉心を組み合わせた高速炉システム では、I の核変換を行う集合体には YH₂を用いて Tc を集合体内の周辺に設置したものであり、表 3.5.1-1 での集合体出力の傾向から3 炉心の場合でも I の核変換を行う集合体出力が最も高いと 考えられる。

出力分布を図 3.5.1-1 に示す。また比較のため I+YH₂の単一装荷の集合体内の出力分布を図 3.5.1-2 に示す。また表 3.5.1-2 に集合体出力と隣接外側燃料の出力ピーキングを示す。この結果、隣接集合体ピン出力は Tc ピンが高くなっていることが分かる。これは、Tc が減速された中 性子の吸収を行っているためであり、外側集合体のピーキングが低いのは、集合体から減速中性 子を Tc フィルターの働きをして遮断しているからである。

I は BaI₂で装荷しているため、融点の 711℃に制限することが必要である。これについて最高 ペレット温度について評価を行った。 I については、核変換による Xe ガスが放出されるため、ギャップ伝達低下による温度上昇と、 I の Xe への変換による出力の低下が生じる。3.4.2 項熱特性では、3 年照射で中空ペレット、ギ ャップは場 0.07mm の時に照射期間が 3 年で 10%であるとして Xe: He=80:20 になるように初期 ピンで内圧 18atm を加圧した。その場合に 10%で出力も 10%低下するとほぼ 709℃となることが 示されている。ここで、照射期間で Xe の放出によるギャップコンダクタンスの低下と出力の低 下による効果で照射期間中の温度変動を評価した結果を図 3.5.1-3 に示す。照射初期では温度が 低く、Xe の放出によるギャップコンダクタンスの低下で温度が上昇し、出力が照射とともに下 がるが照射末期で温度が最高になることが示されている。

これより、照射末期でも健全性が保つことができる。なお、BaI₂ ペレットの密度は現状 95%であ るが、焼結密度は 100%程度とすることができ、ギャップをもんじゅの 0.1mm から 0.07mm と小さ くしていることから中心空孔を 1.8mm あけることができ、その効果で、688℃まで下げることが できる。

(2) ピン構造と健全性評価 【H30-R1】

核変換によりガスが発生する核種で、I で Xe が発生しピン内圧が上昇することによる被覆管の破損を考慮することが必要である。その他ガスを発生させるものは Se が Br に変換するものの、 その量は少なく健全性に影響はしない。これより、I 装荷ピンについて健全性を検討する。

Xe ガス発生による被覆管応力による CDF (Cumulative Damage Fraction)の評価を行う。

表 3.5.1-3 に評価条件を示す。被覆管材には ODS 鋼(分散強化鋼) [3.5-4]を用いた。I を装 荷したピン構造は原型炉のブランケット燃料と形状は同一である。また平成 30 年度に比較して、 減速材比を 90%から 60%に減らしたために BaI₂の装荷量は多いため発生する Xe の量が多くなる こと、また Xe の放出によるギャップコンダクタンスの低下を緩和するために初期に He を 0-30kg/cm² 加圧して装荷することを想定することから平成 30 年度と比較して内圧は高くなり CDF は厳しい条件で評価することとなる令和1年度の結果を中心に記載する。

図 3.5.1-4 には初期加圧を行わない場合、図 3.5.1-5 には 20kg/cm^2 、図 3.5.1-6 には 30kg/cm^2 で初期に加圧した場合の CDF と内圧を評価した結果を示す。なお初期加圧をしない場合に初期内 圧が 3kg/cm^2 となるのは 1kg/cm^2 で封入してガス温度の上昇により内圧が初期で約 3 倍になるた めである。CDF が制限目安 0.5 を超えるのは、初期加圧が 30kg/cm^2 と大きい場合でも核変換率 20%であり 10%程度の核変換率(炉内滞在期間約 3 年相当)では破損はしないことを確認できた。

なお、熱的には、初期加圧 20kg/cm²で内圧は 100kg/cm²以下となるので He 比は 20%以上であり、 熱的にも核変換率 10% (炉内滞在期間約 3 年相当)で成立する。

その他の LLFP 装荷ピンはガスを発生しないため内圧による損傷が発生しないことと、熱的にも 余裕があり健全性が確保できる見通しである。

(3) 集合体構造【R1】

3.3 章の核変換ターゲットピン構造は原型炉のブランケット燃料と形状は同一であるが、
 3.3.1(4)項での複数の炉心を組み合わせた核変換システムにおいては形状の変更がある。
 ①炉心燃料ピンの下部軸ブランケットについてはセパレートピンを採用し太径ピンを装荷した
 このような構造については前例としては仏国ラプソディーの燃料の例がある[3.5-5]。径方向ブ
ランケット領域の Cs 装荷ピンはブランケットより若干の太径化(11.6mm→12.15mm)している。 3.3(3)の炉心 A、炉心 B、炉心 C でのピンの図面を示す。

燃料集合体(炉心 A-C 共通) については図 3.5.1-7 に示す。下部に太径 61 本バンドルの Zr 装荷 ピンを設置したものである。図 3.5.1-8 に径方向ブランケット第1層位置に装荷する Cs 装荷集 合体を示す。このピン径はブランケット燃料より若干太径の 12.15mm のピンを用いている。また 炉心 A-C に共通にブランケット第2層から遮蔽体に入れる Cs 集合体の図を図 3.5.1-9 に示す。 このピンは、軸方向に炉心部、上部、下部のブランケット領域に Cs₂CO₃を装荷している。

図 3.5.1-10 には、炉心 B の I および Tc 装荷ピンを示す。この集合体は Tc ピンを周辺に配置して内側に BaI2+YH2 ピンを配置している。炉心 C の Pd 装荷集合体および Se 装荷集合体を図 3.5.1-11、図 3.5.1-12 に示す。これはブランケット燃料と形状は同じである。

また、装荷する LLFP ペレットの装荷形態については表 3.5.1-4 に示す。

(4) まとめ

LLFP 核種を装荷したピンでは Xe の発生による内圧が発生し、さらにギャップコンダクタンス の低下による温度が上昇し発熱も大きい BaI₂ ピンに対して温度、内圧、CDF の評価を行った。 その結果、初期 He 封入圧を大きくして、Xe によるギャップコンダクタンス低下を緩和すること で3年の燃焼では燃料温度は制限値以下にすることができる。また内圧は3年で 100kg/cm² 以下 であり、CDF も制限目安を十分下回ることから健全性を確認した。

それぞれの LLFP 元素を独立に装荷した炉心における LLFP 集合体の構造は基本的には「もん じゅ」のブランケット燃料集合体と同一とした。6 核種を 3 炉心で組み合わせた核変換システム では十分な SF を確保するため燃料集合体下部ブランケット部に配置した Zr 装荷集合体を太くし、 それによる冷却特性に問題が生じないことを確認した。

参考文献

- [3.5-1]平成 29 年度 原子力システム研究開発事業「高速炉を活用した LLFP 核変換システムの 研究開発」成果報告書
- [3.5-2]平成 30 年度 原子カシステム研究開発事業「高速炉を活用した LLFP 核変換システムの 研究開発」成果報告書
- [3.5-3]原子炉設置許可申請書 (高速増殖原型炉もんじゅ原子炉施設) 平成 18 年 10 月変更
- [3.5-4] JNC-TN9400-2000-048 「ODS フェライト鋼被覆管の設計評価用式の検討」2000 年 4 月
- [3.5-5] https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/062/37062532. pdf?r=1&r=1

項目	最大線出力	集合体出力	被覆管制限温度	冷却材必要流量
	(W/cm)	(MW)	$(^{\circ}C)$	(kg/s)
$90YD_2-10BaI_2$	25	0.089	600	0.51
$90YH_2-10BaI_2$	39	0.160	600	0.78
$90 \text{YD}_210 \text{Tc}$	36	0.135	600	0.72
90YH2-10Tc	44	0.209	600	1.06
90YD ₂ -10ZnSe	24	0.080	470	1.35
90YH ₂ -10ZnSe	30	0.150	-	採用無し
90YD ₂ -10Pd	32	0.147	600	0.77
90YH ₂ -10Pd	41	0.198	600	1.00
$60YD_2 - 40Cs_2CO_2^{*1}$	19	0.068	500	0.87
40YD ₂ -60 Zr ^{*2}	<36	<0.135	600	<0.72

表 3.5.1-1 LLFP 集合体出力と冷却材必要流量

*1)H29 年度 70YD2-30Cs2CO2より出力は外挿評価

*2)密度が大きい Tc に包絡される

種類	ピン出力	集合体出	ピーキン	隣接ピー	備考
		力	グ	キング	
	(W)	(MW)			
Тс	5735	0.158	2.41	1.22	
BaI_2 +YH ₂	1782		0.69		

表 3.5.1-2 LLFP 集合体出力および隣接集合体のピーキング

最大出力はTcピンで生じる。(74W/cm、軸方向ピーキング:1.2)

項目	値	備考
被覆管外径/内径(mm)	11.6/10.6	
ペレット径 (mm)	10.4	
BaI2比率 (%)	40	
YH ₂ (%)	60	
ペレット密度(%)	95	
ガス生成量変換	¹²⁹ I→ ¹²⁹ Xe	但し ¹²⁷ Xe→ ¹²⁷ Xe も生じているので左記
		の量を 1.2 倍する。
被覆管材料	ODS 相当鋼	強度データ[3.5-4]
プレナム長 (mm)	1000	
初期加圧	$0-30 \rm kg/cm^2$	昇温時
被覆管温度(℃)	600	CDF 評価用 流量配分の結果は 450℃以
		下であり、保守側の想定
プレナム温度 (℃)	600	同上

表 3.5.1-3 I装荷ピンの健全性評価条件

表 3.5.1-4 装荷 LLFP の形態 (6 核種 3 炉心システム)

		··· = · · · ·
LLFP	装荷形態	ペレット形態
Ι	$BaI_2 + YH_2 BaI_2$:YH ₂ =60:40	混合粉末焼結体+混合
		複合体
Тс	Tc 金属	金属ペレット
Pd	$Pd+YD_2$ $Pd:YD_2=60:40$	混合複合体
Se	$ZnSe + YD_2$ $ZnSe$: YD2=60:40	混合複合体
Cs	$Cs_2CO3 + YD_2$	混合粉末焼結体+混合
	RB1 Cs ₂ CO ₃ :YD ₂ =70:30	複合体
	RB2—遮蔽体 CS ₂ CO ₃ 100%	
Zr	Zr 金属	金属ペレット

図 3.5.1-1 (I+YH2、Tc) 集合体内発熱分布

図 3.5.1-2 YH90I10 の径方向出力分布

図 3.5.1-3 ペレット中心温度のヨウ素核変換率の依存性

初期加圧を行わない場合 (初期圧力 ~3kg/cm²) CDF=0.5 核変換率 24.0%

図 3.5.1-5 ヨウ素核変換率と CDF、プレナム圧力 (初期加圧 20kg/cm²) CDF=0.5 核変換率 21.5%

図 3.5.1-6 ヨウ素核変換率と CDF、プレナム圧力 (初期加圧 30kg/cm²) CDF=0.5 核変換率 20.0%

図 3.5.1-7 炉心燃料集合体 (炉心 A、B、C 共通)

図 3.5.1-8 炉心 A 径ブランケット第1層装荷用 Cs 集合体

図 3.5.1-9 Cs 装荷集合体(炉心 A、炉心 B、炉心 C 共通 径ブランケット第2層~遮蔽体第4層)

図 3.5.1-10 炉心 B 径ブランケット第1層装荷(I+YH2)、Tc装荷集合体

図 3.5.1-11 炉心 C 径ブランケット第1層装荷 Pd+YD2 装荷集合体

<u>LLFP要素(S=2/1)</u>

図 3.5.1-12 炉心 C 径ブランケット第1層装荷 Se+YD2装荷集合体

3.6 大型高速炉での適用性評価(再委託先:東北大学) 【H30-R1】

3.6.1 大型炉への適用解析

大型高速炉に対して、今まで検討してきた LLFP 核変換手法を適用し、核特性、炉心特性、安 全性を解析し、大型炉への適用性を評価した。

(1) 大型炉の設定【H30】

大型コンパクト型炉心(導入期炉心) [3.6-1]に準じて設定する。主要項目を表 3.6.1-1~3 に示 す。炉心全体系を図 3.6.1-1 に示す。核種は、3.2 項での 1 核種ずつ単独装荷の結果に準じて設 定する。すなわち、ターゲット集合体は径ブランケット第 1 層に装荷する。ターゲットピンに装 荷する減速材割合は 90%とし、減速材材質は、⁷⁹Se、⁹⁹Tc、¹⁰⁷Pd には重水素化イットリウム(YD₂)、 ¹²⁹I には水素化イットリウム(YH₂)とする。

ターゲット集合体の LLFP 装荷部は、高速炉(原型炉)と同様、径ブランケットの燃料体積比 と一致するように、ピン本数、ピン径、被覆管肉厚を設定した。これを表 3.6.1-4 に示す。表の ように、ターゲットピン本数は、もんじゅ仕様を参考にして、燃料バンドルから 2 層少ない、 169 本を選択した。設定した、ターゲット集合体の構造を図 3.6.1-2 に示す。

(2) 解析方法【H30】

CITATION コード[3.6-2]による R-Z 体系拡散計算で核変換特性の評価を行った。図 3.6.1-3 に R-Z 体系計算モデルを示す。断面積ライブラリーは JENDL-4.0 の中性子 70 群を用いた。原型炉 クラスも同様の計算を行い、核変換特性等の比較し、増殖比、SF についての検討を行う。

また、ターゲット集合体を 3.3 章で設定した、I+Tc 集合体(集合体中央部に I+YH₂ピン、集 合遺体周辺部に Tc ピンを配置)をブランケット集合体第1層に配置した場合の核変換特性・炉 心特性を3次元体系での MVP コードにより解析を行った。

(3)解析結果【H30-R1】

図 3.6.1-4 に CITATION による R-Z 体系 70 群拡散計算での大型炉と高速炉との核変換率の比較 を行った結果を示す。図 3.6.1-4 に示すように、大型炉と高速炉の比は、0.3~0.5 であること が分かった。これは、炉心径が大きくなることによる、径方向への中性子の洩れの減少と、集合 体サイズが2倍としたことで集合体内の径方向中性子束が減衰することによる、集合体平均の反 応率の低下が要因と考えられる。

図 3.6.1-5 にサポートファクター(SF)の大型炉と高速炉との比較を示す。¹⁰⁷Pd の SF が 1.0 を 下回ることが分かった。SF=1 を確保するためには、減速材体積比を 90%から 80%に下げる必要が ある。

図 3.6.1-6 に増殖比の大型炉と高速炉との比較を示す。大型炉の増殖比は基準炉心(径ブランケット有)と比較してほとんど変化がなく、1.1 程度を確保できることが分かった。これは、大型炉の増殖比の寄与は軸ブランケットが大きく、径ブランケット第1層がターゲット集合体に置換したとしても、影響が小さいことによる。

令和1年度は3.3項で検討した高速炉核変換システムにおいて径方向ブランケット集合体位置 に設置が必要な構造として、(I、YH₂)+Tc 集合体を装荷することを選定しその核変換特性と炉 心特性の評価を行う。その理由は、ヨウ素は廃棄物処分で重要な核種であること、またヨウ素は 核変換により Xe ガスを放出することから大きなガスプレナムの設定が必要でかつ、装荷すると きの物質 BaI₂ は融点が低いため、温度が高い炉心燃料集合体の上部ブランケットには置けない ことから照射量が大きい燃料集合体の上下ブランケット領域には設置できない。これより径ブラ ンケットにおいた場合に中性子吸収が大きいため、ブランケット第2層以降の増殖比を低下させ るので、この集合体を設置した場合に、増殖比>1と SF>1で高速炉として性能確保可能かを 確認する。

集合体の図 3.6.1-2 の 169 本バンドルでは、図 3.6.1-2 に示すように炉心 B と相似の I+YHe は 91 本、Tc は 78 本と設定した。炉心特性を表 3.6.1-5 に示す。増殖比と SF はともに1を超えて いる。大型炉で核変換率が原型炉に比較して下がるのは、炉心径が大きくなることによる径方向 への中性子束の漏れの減少と、集合体サイズが約 2 倍と大きくなるためである。増殖比が原型炉 に比較して大きくなるのは径ブランケットの寄与が原型炉に比較して小さいためである。また、 安全性に係るドップラー係数とボイド反応度を評価した。ブランケットを第1層に装荷した炉心 とで比較をした結果を表 3.6.1-6 に示す。LLFP を装荷してもドップラーとボイド反応度には殆 ど影響がないことが示されており、安全性は LLFP 集合体を装荷しない場合と同等と考えられる。 なお、炉心の軸ブランケット部分に Zr を装荷した場合の Zr の核変換率は 0.3%で SF は 2.49

となり、高速炉の核変換率は 0.48%、SF は 0.9 程度と比較して核変換率が低く SF が高い。これ は、大型炉のほうが、外部への中性子束が低いが炉心が扁平であるために装荷量が相対的に大き くなるからと考えられる。またブランケット第 2 層に Cs を装荷した場合は高速炉の核変換率は 0.38%で SF は 0.22 程度であるが、大型炉では核変換率は 0.05%で SF は 0.07 と変換率は 1/8 に SF は 1/3 程度に低下する。これは高速炉より大型炉では径ブランケット第1層ですでに中性子 束が低くなっていることに加えバンドルの大きさは 1.6 倍程度であるため径ブランケット第1層 での減衰が大きくなり径ブランケット第 2 層の中性子束が高速炉に比較して低くなるからである。

(4)まとめ

原型炉クラスの高速炉での評価に基づき、炉心 B と同じ、Tc70+I40YH60 の LLFP 集合体を装 荷した炉心を評価した。その結果、増殖比>1、SF>1であることを確認した。

安全性にかかる反応係数は、ボイド反応度、ドップラー係数とも LLFP を径ブランケット第1層 に装荷しても殆ど影響がないことが確認でき、安全性は LLFP 集合体を装荷しない場合と同等で あると考えられる。

本炉心に 10-11 体の Se40YD60 集合体を装荷することで、増殖比>1 で Se、I の SF>1となると 考えられる。

参考文献

[3.6-1] JNC TN9400 2004-039 ナトリウム冷却炉の炉心・燃料設計検討(MOX 燃料炉心); 2003 年度報告

[3.6-2] T. B. Fowler, D. R. Vondy, G. W. Cunningham, "Nuclear Reactor Core Analysis Code: CITATION," ORNL-TM-2496, Rev. 2, with Supplements 1, 2, and 3 (October 1971).

原子炉熱出力	3570 MWt
電気出力	1500 MWe
炉心型式	均質2 領域炉心
運転サイクル長さ	18ヶ月 (548 日)
燃交バッチ数	4/4 バッチ
(炉心/径方向ブランケット)	
炉心高さ	80 cm
軸方向ブランケット厚さ	30/40 cm
(上部/下部)	
炉心燃料集合体数	316 / 278 / 594 体
(内側/外側/合計)	
径方向ブランケット体数	198 体(2 層)
制御棒本数	40 / 15 体
(主炉停止系/後備炉停止系)	
径方向遮へい体数	108 /114 体

表 3.6.1-1 大型炉の炉心基本仕様

表 3.6.1-2 大型炉の燃料仕様

燃料形態	MOX (ペレット型)
ラッパ管外対面間距離	179.2 mm
ラッパ管肉厚	5.0 mm
集合体配列ピッチ	183.2 mm

燃料組成は高速炉多重リサイクル TRU 組成

 ${}^{238}\text{Pu}/{}^{239}\text{Pu}/{}^{240}\text{Pu}/{}^{241}\text{Pu}/{}^{242}\text{Pu}/{}^{241}\text{Am}/{}^{242}\text{Am}/{}^{243}\text{Am}/{}^{242}\text{Cm}/{}^{243}\text{Cm}/{}^{244}\text{Cm}/{}^{245}\text{Cm}/{}^{237}\text{Np}$ = 1.1/54.1/32.1/4.3/3.9/2/0/0/1/0/0/1/0/0.5

炉心 軸ブラン 径ブラン ケット ケット 燃料 44.1 38.1 50.0 構造材 24.2 24.2 18. 0 冷却材 32 31.7 31.7

表 3.6.1-3 大型炉の体積比(%)

		燃料	169 本	127 本
ピン肉厚	mm	0.52	0.5	0.5
ピン内径		7.76	10.5	12.1
ピン径	mm	8.8	11.5	13.1
ピンピッチ	mm	10.12	12.8	14.7
ピン本数		271	169	127
ペレット径	mm		10.3	11.9
集合体内対面距離	mm	169.2	169.2	169.2
ラッパ管肉厚	mm	5	5	5
バンドルピッチ	mm	4	4	4
ワイヤー径	mm	1.39	1.2	1.6
集合体配列ピッチ	mm	183.2	183.2	183.2
バンドル層数		9	7	6
Di		169. 1952	169. 2918	169.0669
燃料体積比		0.441	0.503	0.502
構造材体積比		0.244	0.211	0.199
冷却材体積比 (ラッパ管内)		0.272	0.242	0.255
冷却材体積比(ラッパ管外)		0.043	0.043	0.043
計		1	1	1

表 3.6.1-4 LLFP 集合体ピン仕様

表 3.6.1-5 核変換率、SF、増殖比

核種	大型炉		原型炉炉心 B				
	核変換率(%)	SF	核変換率	SF			
⁹⁹ Tc	0.73	1.16	2.67	3.75			
¹²⁹ I	1.61	1.08	3. 86	3.20			

項目	大型炉	原型炉炉心 B
増殖比	1.104	0.837

表 3.6.1-6 反応度特性

	基準ケース	LLFP 装荷ケース
	第1層にブランケット燃料装荷	第1層 Tc+I40YH260 装荷
ボイド反応度	5.24±0.004 (\$)	5.26±0.004 (\$)
ドップラー係数	-6.57E-3±1.14E-4(Tdk/dT)	-6.53E-3±1.14E-4(Tdk/dT)

図 3.6.1-1 大型炉心の炉心配置図

図 3.6.1-2 ターゲット集合体の構造図

	制御椅	F			制御棹		制御	棒		制御	棒		制御	捧			1	间御棒										
在入仕仕物 /仕)			内側炉	10 01		内側炉			内側炉心	100.101	内	側炉心	000 054		倒炉心	外側	炉心	400	470	外側炉心	040	径方向ブラ	ンケット	SUS這へい体	B ₄ C這へい体			
東古1414或(14)			13	31	30	20	12	4 14	20	123 131	1 109	219	230 250	283	347	389	398	422	4/9	509	049	/45	847	900	1069			
0.0 (em)	146		143	10	146	143	14	6	143	146	5 36	143	146		143	42	3	146	57	80	143	30	102	108	114	内側炉心	集	€合体数 316
0.12 67.0 67.0		L	140	, 		140			140			140			140						140					外側炉心		278
770 100			137	,		137			137			137			137	1:	38			138		139	139			径方向ブランケ [、]	ット	198
	147		66	68	148	70	72	72	74	76	76	78	80	80	82	84	86	150	86	88	90	118	127			制御棒		55
92.0 15.0 00		⊢			-																	110	127			径方向SUS遮蔽体	:	108
107.0 15.0			67	69		71	73	73	75	77	77	79	81	81	83	85	87		87	89	91	119	128			径万问B4U遮敝体 		1060
117.0 10.0			1	6		11	16	16	21	26	26	31	36	36	41	46	51		51	56	61	120	129					1005
1070 000			2	7		12	17	17	22	27	27	32	37	37	42	47	52		52	57	62	121	130			組成種類	数	領域番号
<u>137.0 20.0</u>			3	8		13	18	18	23	28	28	33	38	38	43	48	53	ŀ	53	58	63	122	131			内側炉心	45	1 - 45
157.0 20.0																		╞								外側炉心	20	46 - 65
			4	9		14	19	19	24	29	29	34	39	39	44	49	54		54	59	64	123	132	136	145	翔方向フランケット	52 18	118 - 135
177.0 20.0			5	10		15	20	20	25	30	30	35	40	40	45	50	55	ŀ	55	60	65	124	133			径方向SUS遮へい体	1	136
187.0 10.0	-																	ŀ								径方向B ₄ C遮へい体	1	145
207.0 20.0 9	146		92	94	146	96	98 14	98	100	102 146	102	104	106	106	108	110	112	146	112	114	116	125	134			上部ガスプレナム	3	137 - 139
			93	95		97	99	99	101	103	103	105	107	107	109	111	113		113	115	117	126	135			下部ガスプレナム	3	140 - 142
227.0 20.0	-				-			-		-			-					ŀ								下部遮蔽体(炉心)	1	144
																										Naフォロワ	1	146
			140)		140			140			140			140	14	11			141		14:	2			制御棒吸収体	1	147 - 150
135																												
329.0 102.0		┢	144			144			144			144			144						144							
362.0 33.0	62		90	87	35	43	32	63		63	95	30	42	73	37	53	18	70	92	06	 69	20	40	31	24			
e G	6	70	25.	18.	56 91 3.	14.	73 7.	7.	15.	68 2.	14.	17.	77 5.	81 9.	17.	71 10.	² .	59 5.	12.	16.	17.	17.	17.	17.	17.			
6		ກ່	34.1		53.	F	78.	8	1041	110.0	125.0	671	147.	161,	179.	189.	191.4	197.	210.	227.	245.0	262.1	279.9	297.	314.			

図 3.6.1-3 R-Z 体系計算モデル

注)CITATION による計算結果

図 3.6.1-4 大型炉と高速炉(原型炉)との核変換率の比較

注)CITATION による計算結果

図 3.6.1-5 大型炉と高速炉(原型炉)とのサポートファクターの比較

注)CITATION による計算結果

図 3.6.1-6 大型炉と高速炉(原型炉)との増殖比の比較

3.7 核変換ターゲット構成材料の物性(再委託先:原子力機構)

3.7.1 物性調查·適用性検討【H28】

⁷⁹Se、⁹³Zr、⁹⁹Tc、¹⁰⁷Pd、¹²⁹I および¹³⁵Cs の 6 種の長寿命核分裂生成物を高速炉内で短寿命 または安定核種へ核変換することを目的に、高速炉炉心に装荷可能な最適な形態を検討す るため、先行研究でその物性が明らかにされている Tc、I を除く4元素について、単体、酸 化物、炭化物等の熱伝導度、熱膨張率、融点などの物性、水溶性や酸およびアルカリへの可 溶性、化学的反応性について文献・データベースや実験実施により調査した。その結果、高 速炉炉心領域の温度に対して Se、SeO₂ は融点が低く、PdO や Cs₂CO₃ も昇華や分解が生じ高温 安定性に劣ることが明らかになった。[3.7.1-1]

3.7.2 高温安定性試験【H29】

平成 28 年度の物性調査結果から⁹³Zr、⁹⁹Tc および¹⁰⁷Pd については単体金属状態が、¹²⁹I については BaI₂ がそれぞれ最適な高速炉炉内装荷形態とした。一方、⁷⁹Se、¹³⁵Cs について は、単体や酸化物などの範囲では候補形態の選定に至らなかったため、候補材調査を進め、 ZnSe、CsCl および Cs₂CO₃を対象として示差熱・熱重量分析(TG-DTA)を実施した。その結 果、⁷⁹Se については ZnSe、¹³⁵Cs については Cs₂CO₃が高温安定性に優れていることが明らか となり、それぞれを候補形態とした。LLFP の核変換効率を高めるために水素化物または重 水素化物を中性子減速材として適用することを想定している。Zr と Y を母材とした水素化 物と重水素化物を製造して TG-DTA による水素・重水素解離特性を調査した。その結果、Zr よりも Y が水素・重水素解離温度が高く、高温まで水素・重水素保持性能が期待できるこ と、粉末状や塊状などの形状の違いにより水素・重水素解離特性が異なることが明らかとな った。[3.7.2-1]

3.7.3 共存性試験【H30】

6種のLLFP元素のうち、Se、Zr、Pd およびCsの炉内装荷形態の候補であるZnSe、Zr、Pd およびCs₂CO₃について、被覆管材料と想定したSUS316鋼との共存性を評価した。短冊状のSUS316鋼を粉末状のZnSe、Zr、Pd およびCs₂CO₃と接触させ、500℃または650℃で500時間保持した。その後、外観観察、重量変化量測定、組織観察、元素分析に供した結果、ZnSeとZrは良好な共存性を有していることが明らかになり、PdとCs₂CO₃ではSUS316鋼に酸化層が生成されることが明らかになった。Pd、Cs₂CO₃については、適用環境において雰囲気中の酸素量の低減や被覆管との接触防止処置の必要性が明らかとなった。[3.7.3-1]

3.7.4 強度特性への影響試験【R1】

LLFP の炉内装荷候補形態と被覆管材料との共存性確認の一環として、高温にて LLFP 装荷 候補形態と保持した SUS316 鋼製試験片の引張試験を行い、共存性が強度特性に及ぼす影響 について調査した。

(1) 高温保持試験

LLFPの炉内装荷形態は表 3.7.4-1に示すものとし、これらを図 3.7.4-1および図 3.7.4-2に示す石英製の円筒管で構成された共存性試験装置において、引張試験片形状の SUS316 鋼試験片の標点間位置で LLFP 候補形態と接触させ高温に保持した。高温保持試験は表 3.7.4-2に示すように平成 30年度に実施した共存性試験と同じ条件で実施した。高温保持 後の SUS316 鋼試験片は、エタノールで洗浄した後、外観観察、重量測定、走査型電子顕微 鏡 (SEM)による表面および断面の観察、エネルギー分散型 X線分析 (EDX)による元素分析、 引張試験に供した。高温保持試験の試験片数は LLFP 候補形態毎に4本とし、外観観察と重 量測定は全数について実施し、SEM 観察と元素分析は4本のうちの1本について、引張試験 は残りの3本について実施した。表 3.7.4-1に高温保持試験に供した LLFP 装荷形態の仕様、 表 3.7.4-3 に高温保持試験前後の重量変化、図 3.7.4-3 に試験片の外観を示す。また、図 3.7.4-4 に SEM による観察、図 3.7.4-5~図 3.7.4-10 に分析結果を示す。

高温保持試験後の外観について、図 3.7.4-3 のように ZnSe の試験片では ZnSe との接触 部分に変色が認められたが、他の試験片では試験片全体にわたって変色が認められた。高温 保持前後の重量変化は、ZnSe では重量の増減は無く、Zr ではわずかな重量増加、Pd ではわ ずかな重量増加と重量減少、BaI2では重量減少、Cs2CO3では重量増加をそれぞれ示した。こ れらのうち平成 30 年度に同じ試験条件で共存性試験を行った ZnSe、Pd、Cs₂CO₃については、 平成 30 年度の重量変化結果と同じ傾向であった。SEM による表面および断面観察の結果、 ZnSe の試験片では表面に微粒子の付着があるものの試験前の受入材時の研磨痕が残ってお り表面状態に大きな変化はなかった。断面観察においても変化は認められず、元素分析結果 からも劣化の痕跡はなかった。Zr の試験片では、Zr との接触部分では受入材時の研磨痕が あり変化はなかったが、接触部位の隣接部位では研磨痕が薄くなり、付着層の存在が示唆さ れた。元素分析の結果、Mg が検出され、これは Zr 粉末に含まれる不純物であった。断面観 察からは劣化の痕跡は認められなかった。Pd の試験片では、表面に多数の付着物が認めら れた。元素分析の結果から、これらは Pd、または Pd による酸化層と想定されるが、断面観 察からは大きな劣化の痕跡は認められなかった。BaI₂の試験片では、試験片表面が大きく変 化し、断面観察からは 30µm 程度の変質相が認められた。元素分析の結果、Ba や I との反 応は認められなかったため、BaI2と高温保持時に生じた変質であると推測される。Cs2CO3の 試験片では、試験片表面が大きく変化し、断面観察からも付着物の存在が認められた。元素 分析の結果、この付着物は Cs またはその酸化物であると推測され、SUS316 鋼の Fe 成分も 影響していることが示唆された。これらの ZnSe、Pd および Cs₂CO₃ による SUS316 鋼の変化 についても平成30年度に実施した共存性試験の結果とほぼ同じであった。

(2) 引張試験

これらの試験片について、表 3.7.4-4 に示す条件において引張試験を実施した。引張試験

3.7-2

の結果、ZnSe、Zr および Pd の試験片の引張強度、0.2%耐力、一様伸び、全伸びは表 3.7.4-5 に示すようになり、受入材との比が 0.9~1.0 であり、強度特性に大きな変化はなかった。 一方、BaI₂、Cs₂CO₃の試験片では、一様伸びや全伸びが低下したが、引張強度や 0.2%耐力 には大きな変化は認められなかった。

(3) まとめ

これらのことより、6種の LLFP 核種のうち ZnSe、Zr、Pd については被覆管材料の候補で ある SUS316 鋼に対して高温保持による大きな変化がなく、強度特性にも影響を及ぼしてい ないことが明らかとなった。BaI₂、Cs₂CO₃については、高温保持により SUS316 鋼の表面に変 化は生じるものの、これらの変化は SUS316 鋼の強度特性に大きく影響していないことが明 らかとなった。

参考文献

- [3.7.1-1] 平成 28 年度成果報告書「「もんじゅ」を活用した LLFP 核変換システムの研究開発」
- [3.7.2-1] 平成 29 年度成果報告書「高速炉を活用した LLFP 核変換システムの研究開発」
- [3.7.3-1] 平成 30 年度成果報告書「高速炉を活用した LLFP 核変換システムの研究開発」

LLFP 核種	炉内装荷形態	供試体仕様
⁷⁹ Se	ZnSe	純度:99.999%、形態:粉末
⁹³ Zr	Zr	純度:98%、形態:粉末
⁹⁹ Tc	Tc	
¹⁰⁷ Pd	Pd	純度:99.9+%、形態:粉末
¹²⁹ I	BaI_2	純度:99.95%、形態:粉末
¹³⁵ Cs	Cs_2CO_3	純度:99.99%、形態:粉末

表 3.7.4-1 LLFP の炉内装荷形態と供試体仕様

表 3.7.4-2 高温保持試験条件

LLFP 装荷形態	保持温度	保持時間	雰囲気	
ZnSe	500°C	500 時間		
Zr			Ar	
Pd	GEO ^O C			
BaI_2	050 C			
Cs ₂ CO ₃				

LLFP 装荷形態	試験片 No.	試験前重量(g)	試験後重量(g)	重量変化(g)	
ZnSe	1	0.5029	0.5029	0.0000	
	2	0.5073	0. 5073 0. 5073		
	3	0.5076	0.5076	0.0000	
	4	0.5078	0.5078	0.0000	
Zr	13	0. 4990	0. 4991	0.0001	
	14	0.5018	0.5020	0.0002	
	15	0.5065	0.5066	0.0001	
	16	0.5077	0.5079	0.0002	
Pd	17	0.5042	0.5046	0.0004	
	18	0.5031	0.5031	0.0000	
	19	0. 4997	0.4995	-0.0002	
	20	0.5036	0.5035	-0.0001	
BaI2	5	0.5060	0.5029	-0.0031	
	6	0.5058	0.5028	-0.0030	
	7	0.5054	0.5025	-0.0029	
	8	0.5022	0.4988	-0.0034	
Cs_2CO_3	22	0. 4988	0.5081	0.0093	
	23	0.5012	0.5098	0.0086	
	24	0.5044	0.5044	0.0089	
	25	0.5061	0.5061	0.0080	

表 3.7.4-3 SUS316 鋼の高温保持試験前後の重量変化

表 3.7.4-4 引張試験条件

試験温度	室温	
引張速度	0.381mm/min	
雰囲気	大気	

LLFP 装荷形態	試験片 No.	0.2%耐力 (MPa)	引張強度 (MPa)	ー様伸び (%)	全伸び (%)
受入材	26	396.8	630.6	65.4	81.4
	27	399.2	632.0	65.6	78.5
	28	374.7	627.6	67.1	80.4
ZnSe	1	358.9	636.9	62.9	76.1
	2	444. 9	657.1	57.9	81.9
	3	351.3	631.7	65.1	80.2
Zr	13	337.6	633.0	62.3	74.0
	14	341.6	630.2	62.4	75.7
	15	377.0	640.3	57.3	68.1
Pd	17	343.9	632.5	63.0	80.0
	18	392.3	647.0	58.2	74.3
	19	380.0	635.2	61.6	74.2
BaI_2	5	334.7	586.1	45.4	50.6
	6	368.8	591.8	44.0	51.0
	7	299.4	577.9	46.2	52.3
Cs ₂ CO ₃	22	380.5	646.6	45.1	50.0
	23	333. 7	640.2	55.4	64.5
	24	376.7	638.7	40.8	45.2

表 3.7.4-5 SUS316 鋼の引張試験結果

① 装置体系

図 3.7.4-1 共存性試験装置

図 3.7.4-2 共存性試験装置外観

ZnSe 試験後

Zr 試験後

Pd 試験後

BaI2試験後

Cs₂CO₃試験後

図 3.7.4-3 SUS316 鋼試験片の高温保持試験前後の外観

図 3.7.4-5 SUS316 鋼試験片の元素分析結果(受入材試験片の表面)

図 3.7.4-6 SUS316 鋼試験片の元素分析結果(ZnSe 試験片の表面)

図 3.7.4-7 SUS316 鋼試験片の元素分析結果(Zr 試験片の表面)

図 3.7.4-8 SUS316 鋼試験片の元素分析結果(Pd 試験片の表面)

BaI2 試験片の表面

② BaI2試験片の断面

図 3.7.4-9 SUS316 鋼試験片の元素分析結果(BaI2 試験片の表面および断面)

② Cs₂CO₃試験片の断面

図 3.7.4-10 SUS316 鋼試験片の元素分析結果(Cs₂CO₃ 試験片の表面および断面)

3.8 核変換ターゲットの製造(再委託先:原子力機構)

3.8.1 LLFP 製造試験【H30】

LLFP 製造試験として、先行研究や一般産業技術情報を基に 6 種の LLFP 候補形態の製造手 法を明らかにした。また、中性子減速材として用いる Y および Zr の水素化物、重水素化物 について、ペレット状や板状での製造と炉内装荷状態を想定した温度条件での水素保持特 性評価試験を行った。その結果、6 種の LLFP 候補形態について、既存の製造技術や精製技 術により製造可能な見通しを得た。また、Y および Zr の水素化物、重水素化物はペレット 状や板状にも製造可能であるが、Y については YH₃ または YD₃ が生成されると形状安定性が 著しく劣り、低温域での水素または重水素の解離量も多くなることが明らかになった。 [3.8.1-1]

3.8.2 模擬回収 LLFP 製造試験【R1】

IとCsについて、再処理工程を模擬したプロセスから回収し、それぞれを用いて候補形 態であるBaI₂、Cs₂CO₃を製造し、この製造過程に随伴する不純物について調査した。また、 粉末状と細孔付ペレット状のYD₂を製作し、BaI₂およびCs₂CO₃に対して粉末混合焼結型と混 合複合体型のLLFPターゲットの試作を行った。なお、本試験ではBaI₂、Cs₂CO₃を、再処理 工程を模したプロセスからの回収品から製造することに主目的としているため、回収率に は着目していないが将来的にはこれらの回収率は99%以上を目標としている。

(1) Bal₂の製造試験

再処理工程に使用される吸着材と同じ原理、性能の Ag 系吸着剤に I を吸着させ、Zn 粉末 と硫酸により I の回収を検討した。表 3.8.2-1 に吸着剤からの I の回収条件を、表 3.8.2-2 に I 回収の結果を記す。吸着剤から回収した I を用いて IH の生成を実施した。 IH の生成 はリン酸とハロゲン化塩の反応を参考とし、N₂ ガス通気下で液状と蒸発乾固後の I の回収 液にリン酸を滴下して実施した。 IH は気体状で発生するが、これを純水に回収し、誘導結 合プラズマ質量分析法 (ICP-MS) によりヨウ素量および不純物量を測定した。ここで、リン 酸は事前に 240℃で脱水したものを用いた。図 3.8.2-1 に IH 生成の試験体系、表 3.8.2-3 に IH 生成試験条件を示す。

Iを吸着させた吸着剤からの I の回収結果は表 3.8.2-2 に示す通り 67.4%となり、平成 30 年度に実施した LLFP 回収技術開発時の回収率に比べてやや低くなっていた。I 回収液と リン酸を用いた IH 生成試験の結果は、表 3.8.2-4 に示すように溶液状の場合では純水回収 液中の I は ICP-MS の定量下限値未満であり、IH は回収されなかった。また、乾固状の場合 では純水回収液中の I は 5.7×10⁻⁵g であり、I の初期量の 0.2%と非常に低く、この場合に も IH はほとんど回収されなかった。これらは、吸着剤から回収後に IH を生成する過程に おいて I が揮発したこと、あるいは IH 生成時のリン酸との反応後に純水に回収するまでの 途中で試験器具に付着したことによるものと想定される。 このため、IH の生成は市販の試薬である NaI を用いることに変更し、リン酸との反応に より生成し、純水で回収した。NaI を用いた IH 生成条件を表 3.8.2-5 に、またその結果を 表 3.8.2-6 に示す。I 回収量は初期量の 28.2%に相当する 0.453g であり、回収率は 28.2% となり、非常に低い値であった。この IH 回収液に Ba (OH) 2 を加えて BaI2の製造を行った。 表 3.8.2-7 に IH から BaI2 を製造する手順を示す。溶液中に生成される BaI2 は最終的には 蒸発乾固し、固体状態での X 線回折 (XRD) による構造分析に供した。図 3.8.2-2 に試験開 始時から XRD 供試体までの試料外観を示す。XRD の結果、図 3.8.2-3 に示すように蒸発乾固 によって得られた生成物は Ba (OH) I であり、BaI2 となっていなかった。BaI2 製造が最終的に Ba (OH) I にとどまった原因としては、IH 回収液中の I の不足が想定され、これは NaI から IH を生成する過程で多くの I が喪失し、IH として回収できなかったことによるものと推測 される。このことから、再処理工程から回収される I から BaI2 を製造するためには、製造 途中の IH 生成が重要なポイントとなり、BaI2 製造には製造条件の更なる最適化が必要であ ることが明らかになった。また、IH の生成には赤リンを使用する方法もあるが、赤リンは 爆発性が高く取扱いが困難なため、今回はリン酸を使用したが、BaI2 製造を確実にするため には赤リンによる IH 生成を検討していく必要がある。

上記製造工程における IH 回収液と BaI₂製造時の硝酸溶液に対して ICP-MS による不純物 分析を行った結果、表 3.8.2-8 に示すように IH から BaI₂への製造時の硝酸溶液中からわず かな量の A1 と Si が検出された。これは蒸発乾固時に使用した磁器製坩堝から混在したも のと推定される。これらの元素以外の不純物は検出されなかったが、これは IH 生成過程に 気化分離を行っているためであると考えられる。今回の製造手法では IH 生成の過程を改善 する必要が明らかになったが、その一方で気化分離は不純物の随伴を低減することに有効 であることも明らかになった。

(2) Cs₂CO₃の製造試験

再処理工程での放射性廃液を模擬した模擬廃液を用いて、Cs を回収し Cs₂CO₃を製造する 試験を実施し、その過程における不純物を調査した。模擬廃液は高レベル放射性廃液から TRU 群を分離した後の主要な元素で構成される組成とした。表 3.8.2-9 に模擬廃液の組成を 示す。

Cs₂CO₃の製造は、模擬廃液中のCs を A1Cs(SO₄)₂のCs 塩として析出させ、Ba(OH)₂、CO₂を 用いてCs₂CO₃とする手法を採用した。Cs 塩の析出操作として模擬廃液にA1₂(SO₄)₃・16H₂O を 加えてろ過した。A1₂(SO₄)₃・16H₂O の添加量を変えてこの操作を3回実施し、濾別した析出 物を純水に溶解した。この水溶液にBa(OH)₂を添加し、撹拌後ろ過した。その後、ろ液にCO₂ を通気したが、本来得られると想定していた析出物が生成しなかったため、Ba(OH)₂を再度 添加し撹拌するとともに、酸濃度を測定し酸性であったためNaOH で中和処理した。中和処 理に伴い析出物が生成したため、析出物を濾別した。ろ液に再びBa(OH)₂を添加し、再度析 出物を濾別した。ろ液からのBaの除去操作として、ろ液にCO₂を通気し、析出物を濾別し
た。ろ液に再び CO₂ を通気し、ろ過した。Cs₂CO₃の回収操作として、ろ液に CO₂ を通気し、 蒸発乾固した。これらの操作により最終的に 1.47g の回収物が得られた。

回収物の成分分析を行った結果、表 3.8.2-10 に示すように、17.6%の Na、12.9%の Ba が検出されたが、Cs は 4.1%で非常に低い値であった。また、XRD の結果、回収物は BaSO₄、 Ba (OH)₂、NaHO₃ および CsNO₃ であり、Cs₂CO₃ は確認されなかった。このため、本製造過程に おけるろ液および析出物(ろ過残渣)の Cs 分析を行ったところ、表 3.8.2-11 に示すように なり、当初の想定のような Cs の分離ができていなかったことが明らかとなった。Cs の分離 が想定通りにならなかった理由としては、Cs 塩を溶解するために添加した Ba (OH)₂ などの 試薬が他の元素の析出に消費された可能性などが考えられ、原液が模擬廃液といった多種 多様の元素が含まれるものであったためと考えられる。そのため、再処理工程からの回収 Cs を用いて Cs₂CO₃を製造するためには、先行研究例にあるような群分離手法を用いて Cs を高 効率で回収し、そこから Cs₂CO₃を製造する必要がある。なお、A1Cs (SO₄)₂を利用して Cs を 抽出し、Ba (OH)₂、CO₂を用いて Cs₂CO₃を製造する手法については、原液を、CsNO₃を溶解し た硝酸溶液とした場合には表 3.8.2-12 に示すように約 70%の効率で Cs₂CO₃ 製造ができる ことを別試験により確認している。

また、この製造手法における Cs 以外の不純物の随伴は、模擬廃液を原液として実施した 場合では Na と Ba であり、それぞれ最終回収物の段階で 15.5%と 83.5%となった。Na は原 液から随伴したもの、Ba は原液から随伴したものに加え、Cs₂CO₃の製造過程で添加した試薬 によるものであると考えられる。一方、CsNO₃含有硝酸溶液を原液とした場合は主に Ba のみ であり、その含有率は 2.7%となり模擬廃液の場合よりも非常に低かった。

(3) 粉末混合焼結型/混合複合体型 LLFP ターゲットの試作

6種のLLFPの炉内装荷候補形態であるZnSe、Zr、Tc、Pd、BaI₂およびCs₂CO₃について、 効果的な核変換のための炉内装荷体 (ターゲット)とするためには、中性子減速材との混合 体とする必要がある。Zr、Tc、Pd は、高融点金属の単体形態で中性子減速材と混合または 複合化させることとなるため、これまでの本事業の成果報告書[3.8.1-1]で述べてきたよう に減速材ペレットに細孔を設け、そこにそれぞれの単体LLFPを装填する混合複合体型のタ ーゲット構造が候補となる。一方、ZnSe、BaI₂、Cs₂CO₃はそれぞれ化合物形態として中性子 減速材と混合することとなるため、また、それぞれの粉末に焼結性が期待できるため、中性 子減速材との混合比によって粉末同士を混合し焼結する粉末混合焼結型のターゲットか、 または中性子減速材ペレットに細孔を設け、そこに粉末または焼結した LLFP または LLFP と 中性子減速材の混合体を装填する混合複合体型のターゲットが想定される。粉末混合焼結 型のターゲットは、中性子減速材の YH₂および YD₂ のいずれも水素または重水素の保持温度 において YH₂ または YD₂ の粉末同士の焼結性が期待できないため、混合する ZnSe、BaI₂、 Cs₂CO₃の焼結性に期待することになる。この場合、LLFP 候補形態と中性子減速材の混合比が 重要となり、従来の知見[3.8.2-2]から LLFP 候補形態の混合比が 7 割以上でないと困難で あることが知られている。

今回、中性子減速材としては、粉末状と直径 2.5mm、深さ 5mm の細孔を 4 つ設けた直径 10mm、高さ 10mm のペレット状の Y を重水素化し、それを用いて BaI₂ と Cs₂CO₃ を対象とした 粉末混合焼結型と混合複合体型のターゲットの試作を行った。表 3.8.2-13 に試作したター ゲットの LLFP と中性子減速材との混合比を示す。ここで、BaI2-YD2 と Cs2C03-YD2 の混合比 は3.3節における核変換炉心の設計検討を踏まえて選定した。重水素化したYは、XRDによ る構造分析と不活性ガス融解-熱伝導度法による重水素分析を行った。粉末混合焼結型ター ゲットにおける混合粉末の焼結には放電プラズマ焼結法を用いた。この手法は通電による 昇温となるため、粒子境界での局部的な発熱により短時間で細部まで焼結が進むことが特 長であり、重水素化物粉末からの重水素解離防止や LLFP 粉末の焼結促進にとって有効であ ると考えられる。さらに、混合比が BaI2: YD2 = 40:60 となる混合粉末は焼結性を有する BaI2の含有量が少ないため、BaI2と YD2の粒径を調節し、YD2粒子表面を BaI2粒子で覆うよ うにして焼結性を高めることとした。幾何学的な計算からは表 3.8.2-14 に示すように、180 μmの YD₂粒子を想定すると、BaI₂粒子を 30μmとすることにより粒子数比が 0.993:0.007 となり、体積比で 40:60の混合比であっても YD2粒子の表面全てを BaI2粒子で覆うことが できることとなる。YD2粒子の表面を覆った BaI2粒子同士が焼結することによって、BaI2-YD₂粉末混合焼結型ターゲットが製作できると考えられる。

表 3.8.2-15 に示す条件により重水素化した Y は、XRD の結果から粉末状および細孔付ペ レット状のいずれに対しても重水素化できていることを確認した。図 3.8.2-4 と図 3.8.2-5 にそれぞれの XRD 結果を示す。一方、不活性ガス融解-熱伝導度法による D₂分析の結果は 表 3.8.2-16 に示すように粉末および細孔付ペレットのいずれの形態での YD₂においても D₂ の含有率は理論値よりも低い値であった。この理由は、D₂が軽元素であり、不活性ガス気流 による融解分析法のため、融解で発生した D₂の一部が分析装置の系内に残留してしまい、 全てを検出できていなかったことによるものと考えられる。一方で、XRD の結果からは図 3.8.2-4 および図 3.8.2-5 に示すように複数位置から採取した供試体においても Y 単体のピ ークがないことから、全てが YD₂化していると考えられる。

この YD₂ 粉末と市販の BaI₂、Cs₂CO₃ 粉末を用いて、直径 15mm、高さ 10mm を想定した混合 粉末焼結型ターゲットを製作した。BaI₂-YD₂ 粉末混合型ターゲットの製造には、45 μ m 以下 の粒径の BaI₂ 粉末と 180~300 μ m の粒径の YD₂ を用いた。その結果、図 3.8.2-6~図 3.8.2-8 に示す焼結体が得られた。いずれの混合粉末焼結型ターゲットも焼結できていた。特に混 合比から従来は焼結ができなかった 40:60 の体積比の BaI₂-YD₂ ターゲットについては、粒 径調節の効果が明らかとなった。一方、混合複合型ターゲットについては、ターゲット全体 の混合比が体積比で LLFP:YD₂ が 10:90 となるように BaI₂ または Cs₂CO₃ と YD₂ の混合比を 表 3.8.2-13 のように設定した。その結果、図 3.8.2-9 と図 3.8.2-10 に示すような混合複 合型ターゲットが得られた。これらの結果より、LLFP ターゲットとして粉末混合焼結型お よび混合複合体型のいずれのターゲット形態についても、その製造性に見通しが得られた。

参考文献

- [3.8.1-1] 平成 30 年度成果報告書「高速炉を活用した LLFP 核変換システムの研究開発」
- [3.8.2-2] Y. Tachi, T. Wakabayashi, T. Yokoyama: "Study on Target Fabrication for LLFP Transmutation by Fast Reactors", Proceedings of GLOBAL2009(Paper No. 9158), Paris (France), September 6-11 2009

Zn 粉末	2g
硫酸濃度	(1 ± 2)
(体積比濃度)	(1+3)
加熱温度	$60^{\circ}\mathrm{C}$
加熱時間	10 分間

表 3.8.2-1 Ag 系吸着剤からの回収条件

表 3.8.2-2 Iの回収結果

吸着剤量(g)	10. 1395
亜鉛粉末量(g)	2.0246
I 吸着量(g)	1.030
I 回収量(g)	0. 694
I回収率(%)	67.4

表 3.8.2-3 IH 生成試験条件

I 回収液量(m1)	50		
リン酸添加量(ml)	5		
純水量(m1)	30(15×2 段)		
N2通気時間(h)	1		

表 3.8.2-4 吸着剤からの Iの回収結果

	原液の I 量(g)	ICP-MS 測定値(µg/1)	I 回収量(g)	I回収率(%)
溶液状	0.014	< 0.5	-	-
乾固状	0.028	11. 421	5.711E-05	0.2

NaI 量(g)	1.8971
リン酸添加量(m1)	20
純水量(m1)	30(15×2 段)
N2通気時間(h)	2

表 3.8.2-5 NaI からの IH 生成条件

表 3.8.2-6 NaI からの IH 生成結果

初期 I 量(g)	ICP-MS 測定値(µg/1)	I 回収量(g)	I回収率(%)	
1.606	45. 271	0.453	28.2	

表 3.8.2-7 IH からの BaI2の製造手順

1	IH 回収液に Ba (OH) ₂・8H₂O を添加
2	撹拌(30℃、30 分)後、沈殿物をろ過
3	ろ液を 120℃程度で蒸発乾固
4	乾固後の析出物を粉砕し、再度加熱

表 3.8.2-8 IH 回収液および BaI2 製造時硝酸溶液中の不純物

元素	IH 生成時の回収液(mg/1)	BaI2製造時の硝酸溶解液(mg/1)
Na	< 0.1	< 0.2
A1	< 0.1	1.3
Si	< 0.1	15.4
Р	< 0.1	< 0.2
Zn	< 0.1	< 0.2
Ag	< 0.1	< 0.1
Ι	9050	1450

元素	添加形態	含有量(Mo1/1)	含有率(%)
Н	HNO ₃	2. 47	65.5
Na	NaNO ₃	1.04E+00	27.6
Р	H_3PO_4	1.27E-02	0.34
Fe	$Fe(NO_3)_3 \cdot 9H_2O$	7.77E-02	2.06
Cs	CsNO ₃	1.61E-02	0.43
Sr	$\mathrm{Sr}(\mathrm{NO}_3)_2$	8.39E-03	0.22
Ba	Ba (NO ₃) $_2$	9.72E-03	0.26
Zr	$\operatorname{ZrO}(\operatorname{NO}_3)_2 \cdot 2\operatorname{H}_2\operatorname{O}$	2.74E-03	0.07
Мо	$Na_2MoO_4 \cdot 2H_2O$	2.88E-03	0.08
Mn	$Mn_2(NO_3) \cdot 6H_2O$	2.50E-02	0.66
Ru	硝酸溶液	1.46E-02	0.39
Rh	硝酸溶液	3.14E-03	0.08
Pd	硝酸溶液	7.92E-03	0.21
Се	$Ce(NO_3)_3 \cdot 6H_2O$	5.32E-02	1. 41
Nd	$Nd(NO_3)_3 \cdot 6H_2O$	2.50E-02	0. 66

表 3.8.2-9 模擬廃液組成

表 3.8.2-10 回収物の成分分析結果

(wt%)

	Na	A1	Р	S	Fe	Cs	Sr
1回目の Ba(OH)₂添加後の析出物	3.11	0.59	1.23	12	-	-	2.04
2回目の Ba (OH) 2 添加後の析出物	-	2.23	_	9.16	1.85	-	-
中和操作で生成した析出物	3. 59	35.31	0.23	-	0.6	-	-
中和後ろ液に Ba (OH) 2 添加後の析出物	0.71	1.68	-	-	-	-	-
模擬廃液からの回収物	15.46	1.03	_	_	_	-	-

	Ru	Pd	Mo	Ba	Ce	Nd
1回目の Ba (OH) 2 添加後の析出物	-	_	23.73	50.06	Ι	7.24
2 回目の Ba(0H)₂添加後の析出物	-	-	17.15	69.6	-	-
中和操作で生成した析出物	1.49	0.75	-	19.28	24.31	14.42
中和後ろ液に Ba (OH) 2 添加後の析出物	-	-	-	97.61	-	-
模擬廃液からの回収物	-	_	_	83.5	_	_

	全体量 (g)	分取量 (g)	溶解液量 (1)	Cs 濃度 (g/1)	Cs 含有量 (g)	初期量比 (wt%)
A1 (SO ₄) 添加分離後 の模擬廃液			0. 135	0.1053	0.0142	7.0
1 回目の Ba (OH)₂添 加後の析出物	4. 3499	0.114	0.05	0.0146	0.0280	13.8
2回目の Ba (OH)₂添 加後の析出物	1.2752	0.105	0.05	0.0064	0.0039	1.9
中和操作で生成し た析出物	0. 4834	0.1134	0.05	0.0199	0.0042	2.1
 中和後のろ液の Ba(0H)₂添加後の析 出物 	1. 1952	0.1128	0.05	0. 0010	0.0005	0.3
模擬廃液からの回 収物	1. 4704	0.1147	0.05	0.0938	0.0600	29.7

表 3.8.2-11 ろ液、析出物の Cs 分析結果

表 3.8.2-12 CsNO3 含有硝酸溶液による Cs2CO3 製造効率

初期 Cs 量(g)	0.214
初期量から製造可能な Cs ₂ CO ₃ 量(g)	0. 262
最終回収物中の Cs ₂ CO ₃ 量(g)	0. 1845
Cs ₂ CO ₃ の製造効率(%)	70.4

表 3.8.2-13 LLFP と中性子減速材の混合比

	混合比(vol%)	ターゲット型式	備考
1	$40BaI_2 - 60YD_2$		
2	$70Cs_2CO_3 - 30YD_2$	粉末混合焼結型ターゲット	
3	$100Cs_2CO_3$		
4	$10BaI_2 - 90YD_2$	泪へ指へ休刑な」だいし	細孔内(82BaI2-18YD2:wt%)
5	$10Cs_2CO_3 - 90YD_2$	成百酸百种空クニクット	細孔内(78Cs ₂ CO ₃ -22YD ₂ :wt%)

	混合比 (vo1%)	粒径 (µm)	粒子体積 (cm ³)	粒子数 (n/cm ³)	粒子数比
BaI_2	40	30	1.13×10^{-7}	3. 54×10^{6}	0. 993
YD_2	60	180	2. 44×10^{-5}	2. 46×10^4	0.007

表 3.8.2-14 粒径調節による BaI2 と YD2の粒子数比

表 3.8.2-15 Yの重水素化条件

重水素	D2、純度:99.6%	D = E00/ Am $= E00/$
キャリアガス	Ar、純度:99.9%	$D_2 \cdot 50 / 0$, AI · 50 / 0
高温保持条件	800°C ×3h	
昇温速度	400°C/h	
冷却速度	炉冷	

表 3.8.2-16 不活性ガス融解-熱伝導度法による D2分析結果

(wt%)

		1回目	2 回目	3回目	平均值
YD2粉末	サンプル①	1.82	1.93	1.91	1.89
	サンプル②	1.87	1.75	-	1.81
YD2ペレット	サンプル①	2.34	2.27	-	2.31
	サンプル②	2.28	2.21	-	2.25

図 3.8.2-1 IH 生成の試験体系

図 3.8.2-2 試験開始時から XRD 供試体までの試料外観

図 3.8.2-4 粉末状 YD₂の XRD 結果

図 3.8.2-5 細孔付ペレット状 YD₂の XRD 結果

図 3.8.2-6 40BaI2-60YD2ターゲット(粉末混合焼結型)

図 3.8.2-7 70Cs₂CO₃-30YD₂ターゲット(粉末混合焼結型)

図 3.8.2-8 Cs₂CO₃ターゲット

図 3.8.2-9 10BaI₂-90YD₂ターゲット(混合複合体型)

図 3.8.2-10 10Cs₂CO₃-90YD₂ターゲット(混合複合体型)

3.9 LLFP 回収技術の検討(再委託先:原子力機構)

3.9.1 手法評価【H28】

炉内から取り出された照射後ターゲットや使用済燃料の再処理工程からのLLFP 回収法を 確立するため、それぞれにおける核種の存在状態を考慮して最適な回収手法を検討した。な お、照射後ターゲットからの未変換 LLFP の回収については、未変換 LLFP 元素と変換生成 元素との分離挙動を把握するため、安定同位体を用いた固液分離や溶媒抽出に関わる要素 試験を実施した。再処理工程からの回収については、再処理プロセスや関連先行研究の情報 を収集し、これらに基づき最適な回収法を検討した。照射後ターゲットからの回収法の検討 のため、Se-Br 系、Cs-Ba 系、Pd-Ag 系および Zr-Mo 系における分離手法について検討し、 固液分離可能な手法や分離手法における課題を明らかにした。また、使用済燃料の PUREX 法 による再処理工程における LLFP 核種の挙動を調査し、回収法を検討した。[3.9.1-1]

3.9.2 炉内回収のロス率評価【H29】

放射性ヨウ素の核変換ターゲットの候補形態である BaI₂について、照射後ターゲット組 成を模擬した体系からの回収試験を実施し、ヨウ素の回収率を評価した。得られた回収率か ら炉内回収ターゲットにおけるロス率を評価した。なお、本回収試験は安定同位元素を用い て実施した。また、Se、Zr、Pd およびCs について、平成 28 年度に実施した分離検討試験 に基づき有効な分離が見込める核種に対して分離効率を評価した。BaI₂の回収率を評価し た結果、ロス率は最大 5%程度であることが明らかとなった。ロスした BaI₂は分離回収工程 内にとどまっていると想定されるため、このロス率は回収プロセスの改善によってさらに 低減できると考えられる。Se について不揮発性の酸による分離を試みたが分離は困難であ った。Pd は塩化物化により高効率で分離できることが明らかになった。Zr および Cs につ いては 95%以上の効率で分離可能であることが明らかとなった。[3.9.2-1]

3.9.3 再処理工程からの回収手法の検証【H30】

6種のLLFP 元素のうちターゲット候補形態の選定や照射後状態からの分離回収法に関す る検討が進んでいる BaI₂に対して、再処理工程での存在状態からの回収手法について実験 室規模の回収試験を行い、有効性の検証を行った。また、他のLLFP 元素については再処理 工程内での存在状態に応じた回収手法の検討を行い、候補となる回収手法を提示した。さら に、平成28年度および平成29年度の業務成果に基づき、照射後組成を模擬した成分系に おける分離手法の検討を進めた。

再処理工程でのヨウ素の存在箇所であるヨウ素フィルターのAg 系吸着剤からヨウ素を高 効率で分離回収する手法として、亜鉛粉末による還元とキシレンによる抽出によって可能 であることを確認し、ヨウ素の回収手法の有効性が明らかになった。他のLLFP 元素につい ても、先行研究例の適用や既存の精製技術によって再処理工程よりそれぞれ回収できる見 通しを得た。一方、Se とその核変換生成元素である Br との単体分離は、新たに試みたアル カリ溶液抽出法や酸化揮発法によっても困難であることが明らかになった。このため Br については Se との単体分離は行わず、そのまま炉内照射を継続させることとした。[3.9.3-1]

3.9.4 再処理回収ロス率の評価【R1】

先行研究や文献の調査により6種のLLFPの再処理工程からの分離回収におけるロス率を 評価した。TcおよびPdについては模擬元素を用いた溶媒抽出試験を実施し、ロス率を実験 的に評価した。また、LLFPサイクルに関するマテリアルフローを調査・検討し、再処理工 程での分離回収、高速炉による核変換、その後のリサイクルにおけるマテリアルバランスを 評価した。

(1) 再処理工程からのロス率評価

Zr については TRU 分離の前処理工程において溶媒抽出法により有機相に抽出でき、ほぼ 全量が抽残液に移行し、H-SO4により逆抽出が可能であることが明らかにされている[3.9.4-1, 3.9.4-2]。また、近年の研究では、Zrを溶媒抽出法で有機相に回収した後、逆抽出溶液 の水素イオン濃度(pH)調整により Zr を水酸化物として沈殿回収し、その後、酸化物に転 換後溶融塩電解して回収する手法やモリブデン酸ジルコニウムを沈殿生成し、フッ化物揮 発法により Zr を回収する手法が明らかにされており、 いずれも 90%以上の回収率となって いる[3.9.4-3, 3.9.4-4, 3.9.4-5]。Tc については、白金属を 5×10³M 以上含む高レベル廃 液において硝酸に対するモル比が 1.8 以上のギ酸を添加して脱硝することにより 98%以上 を沈殿回収できることが明らかにされている[3.9.4-6]。また、活性炭吸着によりさらに回 収率の向上が期待できることが明らかにされている[3.9.4-7, 3.9.4-8]。Pd については、 脱硝沈殿工程の抽残液に対し、濃縮-脱硝-ろ過-中和-ろ過の操作を加え、pH 6.7 での Pd の 沈殿率として 99%以上の値が得られている[3.9.4-9]。なお、この手法において Sr が一部 共沈するが、0.01M 硝酸による Sr の選択的な抽出除去が可能となっている。Se は現状では 高レベル廃液からの分離対象となっていないが、レアメタルとしての工業利用を想定した 回収技術として含侵樹脂に吸着させ、NaOH により回収する手法でほぼ 100%回収可能なこ とが示されている[3.9.4-10]。Iについては、再処理の初期の工程でオフガス系へ移行し、 Ag 系フィルターや活性炭フィルターにより捕集される。この捕集率は 99%以上となること が明らかにされている[3.9.4–11, 3.9.4–12]。Cs については、無機イオン交換体による吸 着分離により 104 および 106 以上の除染係数が得られ、Sr-Cs 群からの単体分離が可能であ ることが明らかとなっている[3.9.4-9]。

これらのように、Tc、Pd、Cs は過去の群分離研究の成果から高い分離効率の手法が構築 されている。また、複数の分離技術を併用、多段化適用することによってより高い分離回収 効率も期待できる。これらのことから、Tc、Pd、Cs に対する将来の再処理工程時のロス率 としては 1~2%程度にできるものと推定された。また、Se、Zr、I についてもこれまでの研 究活動により得られた移行挙動や除去率、吸着率等から高い回収率が期待でき、ロス率は 1%程度にできるものと推測された。

⁹⁹Tcと¹⁰⁷Pdの分離抽出を想定し、Tcと化学的特性が類似する Re と Pd の安定同位体を用 いて模擬廃液からの溶媒抽出試験を行った。模擬廃液は「3.8.2(2)Cs₂CO₃の製造試験」で 使用したものと同じ組成で、酸濃度が 0.5mo1/1 と 2.5mo1/1 の 2 種類を用いた。高レベル 廃液の組成ではTcとReはTcO4-、ReO4-のオキソアニオン形態で存在し、他の金属イオンと 異なり抽出剤の開発は難しいものとされていたが、TDGA の基となった DGA の改良よりエー テル酸素を窒素に置換した MIDOA(メチルイミノビスジオクチルアセトアミド)が開発され、 Tc0⁴⁻、Re0⁴⁻に対して硝酸溶液から高い分配比で抽出が可能であることが確認された[3.9.4-13]。試薬メーカからの入手が容易であるため、Tc および Re の抽出剤としては MIDOA を選 択した。2 種類の酸濃度の模擬廃液に抽出剤を添加し、撹拌後 30 分間静置し、分離した相 を別々に回収した。Re は図 3.9.4-1 に示すように低い酸濃度において高い溶媒相/水相の分 配傾向を示すため、逆抽出には高い酸濃度の HNO₃を用いた。表 3.9.4-1 に抽出操作および 逆抽出操作の条件を示す。抽出操作および逆抽出操作の結果、いずれの過程においても溶媒 相と水相(模擬廃液、逆抽出液)の間に中間相が生成した。各相は静置分離後に回収して液 量を測定し、水相である模擬廃液と逆抽出液の分析を行った。 図 3.9.4-2 に抽出操作時の外 観を、図 3. 9. 4-3 と図 3. 9. 4-4 に分離相と逆抽出液を示す。 分析結果を表 3. 9. 4-2 に示す。 また、これらに基づき、模擬廃液からの Re 抽出における抽出率および逆抽出率を表 3.9.4-3 に示す。0.5N と 2.5N 硝酸の模擬廃液における MIDOA による Re の抽出率は 55~68%を示 し、低い酸濃度の抽出効率が若干高くなる傾向を示した。さらに、溶媒相側に随伴する元素 として Pd が 90%以上抽出された。同じ白金族の Ru、Rh は 10%以下であることから、Pd に 対し特異的な抽出効率が示された。また Zr は酸濃度に影響なく 10~25%程度抽出され、Mo は 2.5N 硝酸の模擬廃液では 10%に対し、0.5N 硝酸の模擬廃液では 60%以上抽出された。 Mo は低い酸濃度では析出しやすいため、0.5N 硝酸の模擬廃液の抽出後の液相が乳化したが、 原因はその影響によるものと推測する。アルカリ土類の Sr と希土類の Ce は 1~7%が抽出 された。6N 硝酸による逆抽出の結果、0.5N 硝酸の模擬廃液から抽出した溶媒から約70%の 効率で Re が回収できた。2. 5N 硝酸の模擬廃液から抽出した溶媒からの Re の回収率は 20% 程度を示し、高い酸濃度の模擬廃液からの抽出は Re の回収率が低くなる傾向を示した。随 伴元素については、0.5N 硝酸の模擬廃液から抽出した溶媒の場合、Pd が 6%回収され、次 いで Ce が 10%近く回収された。2.5N 硝酸の模擬廃液の場合、Pd が 2%、Zr、Mo が 10~15% となるほか、Ceが23%回収された。

一方、Pd については、配位型抽出剤が用いられることが多いが、他の金属と比較して白 金族の抽出速度は遅いとされる。配位型抽出剤として工業分野ではDHS(ジ-n-ヘキシルスル フィド)が広く普及しているが、Pd の抽出速度が十分ではなく、またスルフィド基の硫黄が 酸化しやすい問題点がある。それらが改善された抽出剤のTDGA(スルフィド含有ジアミド化 合物チオジグリコールアミド)は、同じ配位錯体を形成し高い耐酸性が見いだされている [3.9.4-13]。TDGA は一般的な産業界では塩酸系で抽出検討がなされており、原子力分野の

硝酸系の溶液からの抽出研究は少ない。応用研究を経て現在 TDGA は試薬メーカから入手可 能となり、入手性より Pd の抽出剤として選択した。Re の場合と同様に 2 種類の酸濃度の模 擬廃液に抽出剤を添加し、撹拌後 30 分間静置し、分離した相を別々に回収した。Pd は図 3.9.4-5より 3N HC1 で良好な分配比を示すことから、模擬廃液の酸濃度で良好な分配比が 得られるものと推測した。また、Pd の逆抽出は 28%アンモニア水で実施した[3.9.4-14]。表 3.9.4-4 に抽出操作および逆抽出操作の条件を示す。Pd の抽出および逆抽出の結果、Re の 場合と同様に、溶媒相と水相(模擬廃液、逆抽出液)の間に中間相が生成した。図 3.9.4-6 に抽出操作時の外観を、図 3.9.4-7 と図 3.9.4-8 に分離相と逆抽出液を示す。各相は静置分 離後に回収して液量を測定し、水相である模擬廃液と逆抽出液の分析を行った。分析結果を 表 3. 9. 4-5 に示す。また、これらに基づき、模擬廃液からの Pd 抽出における抽出率および 逆抽出率を表 3.9.4-6 に示す。これらの抽出および逆抽出の結果、Pd は模擬廃液の酸濃度 の影響を受けず 100% 近い抽出率が得られた。白金族では Ru が酸濃度 2.5N 条件では 20%、 酸濃度 0.5N 条件では 5%抽出され、Rh は抽出されなかった。その他の溶媒相側には Zr、Mo、 Re、Ceの測定した元素については全て随伴し、酸濃度が低い 0.5Nの模擬廃液で移行量が多 い傾向が見られた。28vo1%のアンモニア溶液による逆抽出の結果、2.5N 硝酸の模擬廃液を 抽出した溶媒からは 90%、0.5N 硝酸の模擬廃液の抽出溶媒から 40%の抽出効率で回収さ れ、酸濃度が高い模擬廃液で抽出された条件からの回収率が高かった。溶媒側に随伴した元 素についても 2.5N 硝酸の模擬廃液から抽出した溶媒からの抽出率が全般的に高かった。

これらの試験結果から見積もられるロス率は約30%および約10%であった。これらのロ ス率の改善のためには、抽出条件のさらなる最適化や抽出方法の多段化が必要となること が明らかとなった。

(2) LLFP のマテリアルバランス

高速炉を利用した LLFP サイクルに関するマテリアルフローを検討するに当たり、将来の 高速炉で生成される LLFP 量を 288MWe の原型炉クラスのデータを基に推定した。その結果、 1GWe の高速炉の場合、5 年冷却後の LLFP 量は年間当たり表 3.9.4-7 に示すようになる。こ の LLFP を一定期間炉内に装荷し、高い核変換効率を維持するために定期的に取出し、核変 換生成核種と未変換核種を分離し、未変換核種を再び炉内に装荷するリサイクルシステム におけるマテリアルバランスを評価した。ここで、核変換生成核種と未変換核種の分離は元 素分離を想定し、同位体内の高次化核種を対象とした同位体分離は想定しないこととし、再 装荷の際には炉内装荷中に運転燃料で生成した LLFP を加えることとした。炉内装荷中の核 変換量は、3.3節「高速炉での核変換ターゲット集合体の配置、交換法」で検討・評価され た高速炉 3 基を組み合わせたシステムにおける核変換率に基づき算出した。また、本マテリ アルフローの評価においては各径路における総量把握に主眼を置き、再処理時のロス率は 考慮せず、回収率を 100%として評価している。実規模レベルのマテリアルフローに回収率 を反映するためには、工学規模の回収試験による回収率評価が必要と考えられ、これは今後 の課題である。

その結果、⁹³Zr、⁹⁹Tc、および¹²⁹I については、それぞれ 30 年、10 年および 3 年毎の炉内 からの取り出しとリサイクルを経た再装荷により核変換を持続できることが明らかになっ た。一方、¹³⁵Cs については、60 年毎の取り出しと再装荷となることが明らかとなったが、 一般的な原子炉の設計寿命が最長 60 年程度であることを考慮すると、¹³⁵Cs については長期 間の炉内装荷となることが明らかとなった。これらの核種に対するマテリアルフローと炉 内からの取出量、リサイクル処理量、再装荷量などのマテリアルバランスは図 3.9.4-9 に示 すようになる。一方、⁷⁹Se と ¹⁰⁷Pd は中性子捕獲による高次化核種が多く、元素分離による 未変換核種の回収が困難となるため、リサイクルによる核変換サイクルの構築が難しいこ とが明らかになった。これらの核種については、元素分離のリサイクル処理を行わず、長期 間炉内装荷を継続することで LLFP 量を縮減できることが見込まれ、⁷⁹Se の場合は 69 年で 89%が、¹⁰⁷Pd の場合は 46 年で 67%が変換できる見通しが得られた。

参考文献

- [3.9.1-1] 平成 28 年度成果報告書「「もんじゅ」を活用した LLFP 核変換システムの研 究開発」
- [3.9.2-1] 平成 29 年度成果報告書「高速炉を活用した LLFP 核変換システムの研究開発」
- [3.9.3-1] 平成 30 年度成果報告書「高速炉を活用した LLFP 核変換システムの研究開 発」
- [3.9.4-1] 再処理プロセス・化学ハンドブック検討委員会:「再処理プロセス・化学ハ ンドブック 第3版」, JAEA-Review 2015-002 (2015)
- [3.9.4-2] 内山、朝倉、宝徳、渡辺、根本、藤根:「再処理工程における放射性核種の 抽出移行挙動」, JAERI-Research 96-069 (1996)
- [3.9.4-3] 高橋、村田、山下、金子、大森、浅野、佐々木、鈴木、伊藤:「高レベル廃 液から LLFP 回収技術 (2) 高レベル廃液からの電解法と溶媒抽出法を用い た長寿命核種の分離回収技術の開発」,日本原子力学会 2018 春の年会 2016 (2018)
- [3.9.4-4] 可児、渡邉、福井:「フッ化法による高レベル廃液からの Zr 分離回収」,日本原子力学会 2018 秋の大会 1G06 (2018)
- [3.9.4-5] 森田、鈴木、松村、高橋、大森、金子、浅野:「高レベル廃液からの LLFP 回
 収技術 (4) Zr 回収のための新規抽出剤の検討」,日本原子力学会 2018 秋の大会 2J18 (2018)
- [3.9.4-6] 山口、久保田:「群分離法の開発:テクネチウムの回収法 その1」, JAERI-M 87-034 (1987)

- [3.9.4-7] I. Yamagishi, M. Kubota: "Desorption of Technetium from Active Carbon with Alkaline Thiocyanate Solution", J. Nucl. Sci. Technol., 27, 743(1990)
- [3.9.4-8] 森田、山口、藤原、溝口、久保田:「4 群群分離プロセスの NUCEF 内群分離
 試験装置によるコールド試験およびセミホット試験」, JAERI-Research 2000-024 (2000)
- [3.9.4-9]森田、久保田:「原研における群分離に関する研究開発 4 群群分離プロセス開発までのレビュー」, JAERI-Review 2005-041 (2005)
- [3.9.4-10] 緒方、古賀、倉田:「セレンイオンの分離・回収に関する研究」,平成8年 度 福岡県工業技術センター研究報告(第7号)(1996)
- [3.9.4-11] 游佐、神谷、土屋、高木、何、船橋:「ヨウ素回収基礎試験」, TJ102 79-01 (1979)
- [3.9.4-12] 加藤、宮原:「ヨウ素フィルター試験(中間報告)」, PNC TN9410 93-282(1993)
- [3.9.4-13] 佐々木:「アクチノイド分離用溶媒抽出試薬の開発」, ぶんせき vol.1 (2014)
- [3.9.4-14] 「クレアスターPd-Ex」, Wako Organic Square No.38, p.7

	抽出溶媒	0.1M MIDOA/n-dodecane
	模擬廃液	0.5N, 2.5N
抽山墙佐	溶媒相/水相	50ml / 50ml
加山採作	抽出時間	30 min
	抽出温度	室温
	抽出回数	1回
	逆抽出液	6N HNO ₃
	溶媒相/水相	40ml / 50ml
逆抽出操作	抽出時間	60 min
	抽出温度	室温
	抽出回数	1 回

表 3.9.4-1 Re に対する抽出および逆抽出条件

表 3.9.4-2 Re 抽出における模擬廃液と逆抽出液の分析結果

	MIDOA 0.5N HNO3の模擬廃液			MIDOA	2.5N HNO3の模	擬廃液
	初期量	抽出量	回収量	初期量	抽出量	回収量
Sr	4.14E-04	6.11E-06	<7.13E-06*	4.19E-04	1.11E-05	<7.13E-06*
Zr	1.49E-03	3.93E-04	<6.85E-06*	1.37E-03	1.64E-04	1.87E-05
Mo	1.18E-03	7.57E-04	<6.51E-06*	1.44E-03	1.08E-04	1.67E-05
Re	1.27E-03	8.66E-04	6.00E-04	1.25E-03	6.74E-04	1.30E-04
Ru	7.48E-04	6.13E-05	<6.18E-06*	7.32E-04	0.00E+00	<6.18E-06*
Rh	1.55E-04	5.05E-06	<6.07E-06*	1.57E-04	4.37E-06	<6.07E-06*
Pd	4.00E-04	3.89E-04	2.29E-05	3.96E-04	3.82E-04	8.40E-06
Ce	2.79E-03	1.91E-04	1.69E-05	2.66E-03	4. 21E-05	9.68E-06

*) ICP-AES の検出下限値から算出した参考値

	MIDOA 0.5N 硝酸の模擬廃液[%]		MIDOA 2.5N 硝酸の模擬廃液[%	
	抽出率	逆抽出率	抽出率	逆抽出率
Sr	1.5	_*1	2.6	_*1
Zr	26.4	_*1	12.0	11.4
Мо	64.3	_*1	7.5	15.4
Re	68.1	69.3	54.0	19.2
Ru	8.2	_*1	0.0	_*1
Rh	3. 3	_*1	2.8	_*1
Pd	97.4	5.9	96.5	2.2
Ce	6.8	8.8	1. 6	23.0

表 3.9.4-3 Re抽出における抽出率および逆抽出率

*1) ICP-AESの検出下限値以下を含むもの、および溶媒に抽出されなかったもの

	加 山溶 相	0.05M TDGA /		
	加山谷妹	n-dodecane+20vol%ethyl hexanol		
	模擬廃液	0.5N, 2.5N		
抽出操作	溶媒相/水相	50m1 / 50m1		
	抽出時間	30 min		
	抽出温度	室温		
	抽出回数	1回		
	逆抽出液	28vo1% アンモニア水		
	溶媒相/水相	40m1 / 50m1		
逆抽出操作	抽出時間	60 min		
	抽出温度	室温		
	抽出回数	1回		

表 3.9.4-4 Pd に対する抽出および逆抽出条件

	TDGA 0.5N 硝酸の模擬廃液[mol]			客液[mo1] TDGA 2.5N 硝酸の模擬廃液[mo1]		
	初期量	抽出量	回収量	初期量	抽出量	回収量
Sr	4.14E-04	0.00E+00	<7.13E-06*	4.19E-04	0.00E+00	<7.13E-06*
Zr	1.49E-03	3.10E-04	<6.85E-06*	1.37E-03	9.92E-05	<6.85E-06*
Mo	1.18E-03	6.28E-04	2.89E-05	1.44E-03	1.01E-04	4.18E-05
Re	1.27E-03	3.94E-04	1.81E-04	1.25E-03	2.83E-04	2.11E-04
Ru	7.48E-04	3.41E-05	<6.18E-06*	7.32E-04	1.58E-04	4.31E-05
Rh	1.55E-04	0.00E+00	<6.07E-06*	1.57E-04	0.00E+00	<6.07E-06*
Pd	4.00E-04	3.95E-04	1.54E-04	3.96E-04	3.91E-04	3.55E-04
Ce	2.79E-03	1.18E-04	<4. 46E-06*	2.66E-03	8.56E-05	<4.46E-06*

表 3.9.4-5 Pd 抽出における模擬廃液と逆抽出液の分析結果

*) ICP-AES の検出下限値から算出した参考値

	TDGA 0.5N 硝酸の模擬廃液[%]		TDGA 2.5N 硝酉	酸の模擬廃液[%]
	抽出率	逆抽出率	抽出率	逆抽出率
Sr	0.0	_*1	0.0	_*1
Zr	20.8	_*1	7.3	_*1
Mo	53.3	4.6	7.0	41.3
Re	31.0	45.9	22.6	74.4
Ru	4.6	_*1	21.6	27.3
Rh	0.0	_*1	0.0	_*1
Pd	98.8	39.1	98.8	90.6
Ce	4.2	_*1	3.2	_*1

表 3.9.4-6 Pd 抽出における抽出率および逆抽出率

*1) ICP-AES の検出下限値以下のものおよび溶媒相に抽出されなかったもの

LLFP	年間生成量(kg)	同位体比率	全同位体重量(kg)
⁷⁹ Se	0.13	0.133	1.01
⁹³ Zr	18.82	1.000	18.82
⁹⁹ Tc	10.24	0.217	47.16
¹⁰⁷ Pd	5.66	0. 761	7.44
$^{129}\mathrm{I}$	13.26	0. 200	66.48
¹³⁵ Cs	36.46	0. 352	103. 55

表 3.9.4-7 高速炉 (1GWe) における LLFP 生成量

図 3.9.4-1 MIDOA の抽出特性(出典[3.9.4-13])

図 3.9.4-2 Re 抽出操作時の外観

図 3.9.4-3 MIDOA による抽出後の分離相

図 3.9.4-4 MIDOA 抽出における逆抽出液

置拌前の抽出溶媒相と模 擬液。 上相が抽出溶媒、下相が 模擬液。 (左:2.5N HNO3 模擬液 右:0.5N HNO3 模擬液)	TDCA 2.5 HA	TG DA DSTN FX Hata
攪拌中は溶媒相と模擬液 相は均一な状態を示し た。 (左:2.5N HNO3 模擬液 右:0.5N HNO3 模擬液)	TDCA 2.5 ## Hat	TG DA DSTN AZ HALX
遺拌操作後の試験波を分 液ロートに移し、静置し て相分離させた状態。 上相が抽出溶媒、下相が 模擬波相。 2.5N 硝酸模擬液は褐色 を示す自金族元素が溶媒 相に多く移行し、相の色 がほぼ同じとなった。 (左:2.5N HNO3 模擬液 右:0.5N HNO3 模擬液)		

図 3.9.4-7 TDGA による抽出後の分離相

図 3.9.4-8 TDGA 抽出における逆抽出液

図 3.9.4-9 Zr、Tc、I および Cs のマテリアルバランス

3.10 照射試験計画(再委託先:東京都市大学)

3.10.1 照射試験計画の策定【H30-R1】

① 平成 30 年度の実施内容および成果

照射炉の調査を行い、照射サンプルの種類、サンプルの形状、照射位置等を考慮して核変換タ ーゲットピンを照射する照射試験計画を立案した。

LLFP 照射試験(フェニックス炉)および照射計画(もんじゅ、常陽)について、照射サンプル の種類、サンプルの形状、照射位置等について調査を行い参考となる情報を収集した。これらの 情報を基に照射炉は、日本原子力研究開発機構の高速実験炉「常陽」を用いることとした。照射 サンプルは I、Se および Cs の 3 種類とした、照射のための LLFP 試料の入手が困難であることか ら、天然元素を照射して燃焼チェーン中に現れる LLFP 核種の存在量を評価した。また、常陽で の照射を模擬した燃焼計算の質量の統計分布から¹²⁹I および⁹⁹Tc の相対標準偏差を算出した結果、 核変換率とサポートファクタの不確定性はどちらも¹²⁹I の方が⁹⁹Tc より大きく、スペクトルが固 くなると不確定性が大きくなることが分かった。

令和元年度の実施内容および成果

核変換特性、集合体の健全性を確認するために高速炉を用いて核変換ターゲット集合体1体を 照射する照射試験計画を策定した。

(1) 照射試験策定の目的

新しい燃料を開発する際には少数の燃料棒や燃料集合体を試験炉で照射した後に、燃料ペレットの健全性の確認や物性の測定、核計算の妥当性などが検証される。LLFP の場合も減速材と混合または複合されたペレットを照射することにより下記項目の確認が必要と考えられる。

- ・ ターゲットの健全性
- 核変換の定量的実証性

本検討はこれらを確認するための照射場を提案するものであり、同時に試験炉にターゲットを装 荷することによる炉心への影響(出力ピークの抑制)を評価し炉心の成立性を示すものである。

(2) 照射ターゲット

LLFP 核種の試料は一部の核種で微量の標準サンプル程度の入手は可能[3.10.1-1]であるものの、照射試験で必要とされる量の入手は困難である。そこで、核種の燃焼チェーン中に LLFP 核種を含むパスを用いて原子炉での中性子照射により燃焼を行い、LLFP 核種を生成・消滅させその定量的評価を行うことにより核変換を実証する照射試験を策定することとした。このための LLFP 核種として図 3.10.1-1 に示す ¹³⁵Cs を選択し、天然 Cs (¹³³Cs) と減速材 (YH₂ または YD₂) との均質な混合物を照射ターゲットとして ¹³⁵Cs を含む Cs 同位体および同時に生成する Ba 同位体の生成量を評価した。ここで、¹³⁵Cs の生成量が最大となるように中性子スペクトルを調整した。この 結果 Cs の化学形態である Cs₂CO₃ と減速材 (YH₂ または YD₂) の体積比は 5%:95%となった。

(3) 照射場解析

照射試験に用いる原子炉は日本原子力研究開発機構の高速実験炉「常陽」[3.10.1-2]とした。 炉心は今後起動が想定される MARK-IV 炉心(定格熱出力 100MWth)[3.10-1-3]とし、その反射体 領域に照射試験集合体として「C型照射燃料集合体」1 体を装荷するものとする。Mark-IV 炉心 および照射ターゲットの仕様を表 3.10.1-1 に示す。

試験集合体と炉内装荷位置

常陽炉心の横方向断面を図 3.10.1-2 に示す。この図は後述する解析における全炉心非均質解 析モデルをも表している。照射集合体の装荷位置は図中の Position-1 および Position-2 の 2 か 所である。一つは高い中性子束を利用することを目的とし燃料集合体に隣接した位置(Position -1)とした。この位置に装荷される集合体では集合体幅約 8 cm という狭い領域で高い核変換率を 得るため減速材として水素(YH₂)を用いた。このため、減速された熱領域の中性子が炉心燃料 領域に漏洩して核分裂による出力ピークが発生するのを避けるため照射集合体内側最外周に熱中 性子遮蔽材としてガドリニア棒を用いた。Position-1 での炉内装荷状況を図 3.10.1-3 および図 3.10.1-4 に示す。二つめは多様な減速材が使用できるようにさらに外側の位置である(Position -2)[3.10.1-4]。この位置では中性子束レベルが低下するため核変換を共鳴領域近傍で行うよう に照射集合体の周りをアルミの減速材で巻き、且つ照射集合体内の減速材による吸収で中性子束 レベルが低下しないように集合体内の減速材は重水(YD₂)とした。Position-2 での炉内装荷状況 を図 3.10.1-3 および図 3.10.1-5 に示す。

炉心解析は、3 次元非均質体系で連続エネルギーモンテカルロ法コード MCNP-6.2[3.10.1-5]を 用いて有効ヒストリ数1千万で行った。核データライブラリは JENDL-4.0[3.10.1-6]である。計 算時点は平衡炉心の燃焼初期とし平衡炉心の燃料組成を用いた。MCNP の計算体系の径方向断面 を図3.10.1-2に示す。

照射試験集合体内のピンの燃焼は、FISPACT-II-3.20[3.10.1-7]で行った。核データライブラ リは炉心計算との整合性を図るため同じ JENDL-4.0 を用いた。MCNP 計算から得られたピンの 175 群(VITAMIN-J)[3.10.1-7]の中性子スペクトルおよび中性子東レベルを用いて Cs、Ba の同位体 および熱中性子遮蔽材である Gd の燃焼を行った。燃焼により試験集合体内のピンの組成が変化 するため燃焼するたびに燃焼後の組成を用いて MCNP により炉心計算を行い試験集合体に隣接す る燃料棒の出力ピークを評価した。このため計算は MCNP と FISPACT-II による繰り返し計算とな る。この燃焼計算の流れを図 3.10.1-6 に示す。燃焼日数は 1200 EFPDs (Effective Full Power Day: EFPD) 〔定格出力で5サイクル/年×4年照射〕である。

③ 炉心の臨界解析結果

試験集合体が装荷されていない炉心を基準炉心とする。燃料集合体数は 75 体であり、制御棒 はフルストローク 650 mm に対し炉心下端から 505 mm 引き抜いた位置にあり、制御棒は全ての解 析でこの位置に固定した。実効増倍率の計算結果を以下に示す。

基準炉心(LLFP 装荷無し): k_{eff} = 1.00100±0.00008

LLFP 装荷炉心(Position-1): k_{eff} = 0.99847±0.00008

LLFP 装荷炉心 (Position-2) : k_{eff} = 1.00017±0.00008 LLFP 集合体を Position-1 に装荷した場合は基準炉心に対し反応度が 0.25 %低下している。し かし、表 3.10.1-1 に示すように炉心の運転余裕が 0.6 %あることから、この反応度低下は運転余 裕により吸収できるものである。

④ 燃焼解析結果

Position-1 における結果:

装荷された照射集合体の詳細を図 3.10.1-7 に示す。照射集合体内には、中心に減速材 YH₂ と Cs₂CO₃が混合されたピン1本、その周りに YH₂減速材 18本、最外周にガドリニア(Gd₂O₃)棒 18本 が装荷されている。ガドリニア棒内の Gd の中性子吸収による空間的自己遮蔽により燃焼に伴い Gd 同位体の原子数密度がピン内で大きく変化するため、ガドリニア棒を等体積 5 分割して燃焼 した。また、Gd の燃焼は熱中性子束に依存するため、ガドリニア棒を燃料側、その反対側およ び側面の 3 つのグループに分けて燃焼計算を行った。さらに、燃焼初期には細かなタイムステップとし、燃焼に伴い大きなタイムステップを取ることにより Gd の燃焼を適切に取り扱った。

図 3.10.1-8 に Cs 同位体の照射日数依存性を示す。図から 600 EFPDs 照射後には ¹³⁵Cs は天然 Cs である初期 ¹³³Cs の量の 1 割程度生成されその後徐々に生成量が増し 1200 EFPDs では残存 ¹³³Cs 量と LLFP である生成された ¹³⁵Cs 量は同程度となることが分かる。

図 3.10.1-9 に Ba 同位体の照射日数依存性を示す。¹³⁴Cs と ¹³⁵Cs の反応量評価に利用できる ¹³⁴Ba、¹³⁵Ba、¹³⁶Ba の量が1桁程度の差で生成されていることが分かる。

図 3.10.1-10 には、¹⁵⁵Gd および ¹⁵⁷Gd の原子数密度の照射日数依存性を示す。¹⁵⁵Gd の濃度は約 40 EFPDs で半分となり、1200 EFPDs では 10 分の 1 以下となった。これに対して、¹⁵⁷Gd の濃度は 燃焼初期ではさらに早く約 14 EFPDs で半分となったが、1200 EFPDs では大分残っており、原子 数密度の照射日数依存性は小さいことが分かる。これは、以下のように燃焼した ¹⁵⁵Gd の捕獲か ら ¹⁵⁷Gd が生成するからである。

 ${}^{152}_{64}Gd \xrightarrow{(n,\gamma)} {}^{153}_{64}Gd \xrightarrow{(n,\gamma)} {}^{154}_{64}Gd \xrightarrow{(n,\gamma)} {}^{155}_{64}Gd \xrightarrow{(n,\gamma)} {}^{156}_{64}Gd \xrightarrow{(n,\gamma)} {}^{156}_{64}Gd \xrightarrow{(n,\gamma)} {}^{157}_{64}Gd \xrightarrow{(n,\gamma)} {}^{158}_{64}Gd \xrightarrow{$

このことから Gd による出力ピーク抑制効果は長期間にわたって維持されることが分かる。

燃料棒の出力ピークは照射集合体に隣接する燃料集合体(JS0085)内の燃料棒に現れる。このた め、出力ピーキング係数はこの集合体に着目して、(燃料集合体ピーキング係数×集合体内燃料 棒ピーキング係数)×集合体軸方向ピーキング係数で求めた。このうち括弧内は径方向出力ピー キング係数であり MCNP-FISPACT-II の計算結果から図 3.10.1-11 に示すように照射期間全域にわ たり 1.10 以下である。また、集合体の軸方向ピーキング係数は図 3.10.1-12 に示す軸方向出力 分布から 1.15 であった。この結果から、照射場 Position-1 に隣接した集合体内の燃料棒の出力 ピーキング係数は計算の不確定性として余裕 5 %を取って 1.33 となる。

常陽の燃料集合体は燃料棒が 6 層であるので燃料集合体当たりの燃料棒本数は 127 (本/集合体)となる。Mark-IV 炉心の燃料集合体は 75 体であるので、保守的な評価をするために発生する熱出力は全て内側および外側燃料集合体から生じたものとして炉心平均線出力は、

3.10-3

$\frac{100(MW) \times 10^{6}}{127(\pi/\$合) \times 75(\%) \times 50(cm)} = 210 W / cm$

となる。これから燃料棒の最大線出力は、210×1.33≅280 W/cm となり、制限値である 330 W/cm 以下であることから、本照射場は炉心として成立していることが分かる。

図 3.10.1-13 にターゲット(YH₂+Cs₂CO₃)の中性子スペクトルを示す。エネルギー表示の中性子 スペクトルは、0.6MeV 近傍から約 0.6 eV まで直線的に上昇しており、0.6 eV 以下では小さな熱 中性子のピークが現れていることから中性子は熱領域まで減速されていることが分かる。レサジ ー表示の中性子スペクトルは緩やかに減少している。これに対し、ガドリニア棒内の中性子スペ クトルは図 3.10.1-14 に示すように約 3keV 近傍から減少し始め、熱領域では大きく減少して熱中 性子のピークも現れていない。このことから、ガドリニアが熱中性子遮へい材として効果的に働 いていることが分かる。両図より、この遮蔽効果は、中性子エネルギー約 3KeV 近傍から徐々に 効き始めていることが分かるが、これは減速中性子が Gd の分離共鳴エネルギー領域に入り吸収 され始めていることを表している。また、中性子エネルギー約 3KeV には ²³Na の共鳴も存在する。

Position-2 における結果:

装荷された照射集合体の詳細を図 3.10.1-15 に示す。照射集合体内には、内部に減速材 YD2と Cs₂CO₃ が混合されたピン 37 本が装荷されている。照射集合体の周りには減速材としてアルミの ブロックが装荷されている。

図 3.10.1-16 に Cs 同位体の照射日数依存性を示す。図から 600 EFPDs 照射後には ¹³⁵Cs は天然 Cs である初期¹³³Cs の量の約 1/1000 程度生成されその後徐々に生成量が増加するが 1200 EFPDs で約 1/100 程度となっている。図 3.10.1-17 に Ba 同位体の照射日数依存性を示す。Position-1 での生成量である図 3.1.1-9 と比べると生成量は約 1/10~1/100 程度である。¹³⁵Cs や Ba 同位体 の生成量が少ない理由は、Position-1 の照射ターゲットの位置の中性子束は 1.76×10¹⁵ cm⁻²s⁻¹ であるのに対し Position-2 での中性子束は 6.00×10¹⁴ cm⁻²s⁻¹と 3 倍低いことによると考えられ る。

また、照射集合体の装荷位置が燃料集合体から離れていることと、減速材として重水(YD₂) を用いていることから燃料棒の出力ピークは生じない。

これらの結果から、照射ターゲットの総体積を考慮して重量を求めると、360 EFPDs 照射後の ¹³⁵Cs の生成量は、Position-1 では ¹³³Cs の初期装荷量 152.8 mg に対し 7.7 mg、Position-2 では ¹³³Cs の初期装荷量 14.1 g に対し 12.6 mg となりほぼ同量の約 10 mg 程度が生成されることとな る。照射後試験により Cs および Ba の同位体組成が測定されれば、¹³⁴Cs(n, γ)¹³⁵Cs 反応や ¹³⁵Cs (n, γ)¹³⁶Cs 反応の断面積の妥当性を積分実験として検証することができ、核変換の実証性が 示されることになる。

(4) まとめ

LLFP の核変換を実施するにあたっては、照射試験により LLFP ターゲットの健全性や核計算の 妥当性を示す必要がある。このため、高速実験炉「常陽」を用いて核的検討を行い、 天然 Cs と減 速材(YH₂, YD₂)からなるターゲットを照射することにより、LLFP 核変換の実証性を示すための 照射集合体および照射場を構成することができた。その結果、LLFP 核種である¹³⁵Cs を含む Cs 同 位体およびそれらの中性子吸収と崩壊により生じる Ba 同位体の生成量を評価することができた。 照射後試験で同位体組成が測定されれば積分実験として核変換の実証性を定量的に示すことがで きる。

参考文献

- [3.10.1-1] National Institute of Standards and Technology (NIST) U.S. Department of Commerce, https://www.nist.gov/
- [3. 10. 1-2] JOYO USER'S GUIDE

https://www.jaea.go.jp/04/o-arai/joyo_users_guide/sharing/index.html

- [3.10.1-3] 「常陽」MK-IV炉心の核設計について(案)、日本原子力研究開発機構 大洗研究所 高速実験炉部、平成30年5月.
- [3.10.1-4] T. Aoyama, S. Maeda, Y. Maeda and S. Suzuki, Transmutation of Technetium in the Experimental Fast reactor "JOYO", Journal of Nuclear and Radiochemical Sciences, Vol. 6, No. 3, pp.279-282, 2005.
- [3.10.1-5] MCNP® USER'S MANUAL Code Version 6.2 , Los Alamos National Laboratory report LA-UR-17-29981.
- [3.10.1-6] K. Shibata, et al., JENDL-4.0: A New Library for Nuclear Science and Engineering, Journal of Nuclear Science and Technology, 48[1], pp.1-30 (2011).
- [3.10.1-7] The FISPACT-II User Manual, UKAEA-R(11)11 Issue 8, December 2016.

項目	単位	数值
炉心出力(炉心 + ブランケット)	MWt	100 *
運転サイクル	日	60 *
年間サイクル数	—	5 *
燃料集合体数(内側/外側)	体	17/58 *
核分裂性 U/Pu 最大装荷量	kg	約 250 *
初期燃料密度	%TD	94 *
Pu含有率(内側/外側)	Wt%	約 22/約 29 *
核分裂性 Pu 富化度(内側/外側)	Wt%	約 16/約 21 *
Pu 同位体組成比 ²³⁸ Pu/ ²³⁹ Pu/ ²⁴⁰ Pu/ ²⁴¹ Pu/ ²⁴² Pu/ ²⁴¹ Am	Wt%	1/66/24/4/3/2 *
²³⁵ U 濃縮度	Wt%	18 *
0/M比	—	1.97 *
1次冷却材流量	t/h	1335 *
炉心入口・出口温度	°C	350/456 *
制御棒構成	—	主:4本/後備:2本 *
制御棒所要反応度	$\% \Delta k/k$	3.5 * 定格最大過剰反応度 2.0 (燃焼 1.4 + 運転余裕 0.6) 温度および出力補償 1.49 (100℃~定格出力)
LLFP 集合体照射期間	年	$4(4 \times 5 \times 60 = 1200 \text{ EFPDs})$
LLFP 化学形態 ・天然 Cs		Cs_2CO_3 (4.24 g/cm ³)
LLFP ペレット含有減速材化学形態	—	YH2またはYD2
LLFP ペレット減速材体積割合	%	95
LLFP ターゲット棒(外径/内径)	mm	8.5/7.5
LLFP ターゲット棒被覆管厚さ	mm	0. 5
LLFP ターゲット長さと本数		
Position-1	—	2.00 cm/ 1 本
Position-2		5.00 cm/37 本

表 3.10.1-1 常陽 Mark-IV 炉心および照射ターゲットの主要パラメータ

* 参考文献[3.10.1-3]

図 3.10.1-2 常陽の炉心断面と照射集合体装荷位置

図 3.10.1-3 照射集合体と常陽への炉内装荷位置

図 3.10.1-4 照射集合体装荷位置 (Position-1)

図 3.10.1-5 照射集合体装荷位置 (Position-2)

図 3.10.1-6 FISPACT-II による燃焼計算の流れ

図 3.10.1-7 Position-1 に装荷した照射集合体の燃焼領域

図 3.10.1-8 Position-1 における Cs 同位体の照射日数依存性

図 3.10.1-9 Position-1 における Ba 同位体の照射日数依存性

(b) ¹⁵⁷Gd の原子数密度の照射日数依存性

図 3.10.1-10¹⁵⁵Gd および¹⁵⁷Gd の原子数密度の照射日数依存性

図 3.10.1-11 照射集合体に隣接する燃料棒の径方向出力ピーキング係数の照射日数依存性 〔照射集合体(Position-1)に接する燃料集合体(JS0085)内の燃料棒の径方向出力ピーク〕

3.10-13

図 3.10.1-15 Position-2 に装荷した照射集合体の燃焼領域

図 3.10.1-16 Position-2 における Cs 同位体の照射日数依存性

図 3.10.1-17 Position-2 における Ba 同位体の照射日数依存性

3.11 社会科学的意義(再委託先:東北大学)【H28-R1】

3.11.1 調査・分析・まとめ【H28-R1】

(1) はじめに

現代社会では、科学技術に対する社会的意思決定は、市民参加方式を重視するトレンドが支配 的になっている。このため、新しい技術の開発にあたっては、研究プロジェクト着手後の早い段 階から、その技術の概要、価値、成立可能性、リスクなどに関して、専門家ではない一般市民に 対してわかりやすく説明するとともに、様々な不安や懸念に対しても的確に回答できる能力が強 く要求されている。

LLFP 核変換による長寿命核種の短半減期化技術(以下では LLFP 核変換技術と略記)というア プローチは、我が国のエネルギー政策、原子力政策上、重要な技術である高レベル放射性廃棄物 の地層処分で避けることのできない「何万年にもわたる安全性の確保」という社会的要求に伴う 困難を格段に低減できる可能性を有している。一方で、LLFP 核変換技術の社会的受容を高めるた めには、LLFP 核変換技術を専門とする研究者集団が、前述したように技術の概要、価値、成立可 能性、リスクなどに関してについて、様々な信念体系を持つ市民に対して、わかりやすく、明快 に説明できることが必要である。

このような説明を効果的に行うに際しては、多くの課題が解消される必要がある。この課題を 大まかに分類すれば、(1) LLFP 核変換技術そのものが内包する多様な技術的課題とその解決策を 説明することに伴う難しさと、(2) 説明対象の市民の中に、原子力政策や核燃料サイクル路線そ のものについて批判的な市民から、原子力については強い批判を持っていないが高レベル放射性 廃棄物を地下深くに埋設してしまうやり方に批判的な市民まで、様々な意見のスペクトルを持つ 対象者が存在することによる難しさの、双方が存在する。課題(1) は、説明すべき技術コンテ ンツの複雑さに起因する困難、課題(2) は説明を提供すべき相手の見解や信念の多様性に起因 する困難ということができよう。

上記のような問題意識を踏まえて、これまでに実施してきた研究の概要を以下に示す。

(2) 特に強い属性を持たない一般市民を対象とした調査(Web)の実施【H28】

平成28年度は、課題(1)に力点を置いて、原子力に関してあまり強い推進/反対のような 意見を持たない市民を対象として、Webベースの調査を実施し、1459名からの回答を得て分析を 行なった。なおこの段階では「LLFP核変換」と言わず、「分離・変換技術」という呼び方をしてい た。得られた知見は以下のように要約できる。

- 一般市民にとって分離・変換技術の理解は困難であるが、放射性廃棄物の処分の負荷の低減
 に対する基本的な有効性の認識はある程度得られた。
- しかしながら、我が国の原子力エネルギー利用と不可分な地層処分の問題に対して否定的意見が多かったことには注意する必要がある。分離・変換技術に関しても今後、より具体的な問題として認識されるにつれて、否定的な意見が増える可能性もあると推測される。
- 分離・変換技術だけでなく、地層処分問題についてもその技術的内容だけでなく、その倫理
 的・社会的妥当性に関して的確な説明ができる能力の涵養が必要である。

(3) 原子力に明確に反対している市民を対象とした対話のあり方【H29】

平成 29 年度は、先行して実施されている実践的研究からの知見を参照しつつ検討を進めた。 意見の隔たりが大きい市民との討論に際しては、性急な説得や合意は求めることはできない。こ のような場合には、真摯な対話を通じて、ある程度まで信頼関係を確立したのちに、それぞれの 意見内容を「事実」と「それ以外の価値判断や推測」に分けて、両論を対比した形でまとめた「両 論並記資料」を作成するという、共考・協働アプローチが有効と考えられる。このアプローチは、 リスク心理学の権威で実践経験も豊富な木下富雄氏(京都大学名誉教授)も推奨されており、経 験的にも学術的にも一定の合理性を持つ方策と考えている。得られた主な知見は以下の通りであ る。

- 「事実」を重視しつつ対話を進めることに関しては原子力に関する立ち位置を超えて合意が 得られた。
- 「事実」の中にも「科学的または技術的に定説とされている事実」「論文等に報告が述べられているが評価は定まっていない事実」「権威者の談話」「法律や規則」などがあり、区別する必要があるという気づきが得られた。
- 意見の対立があった場合に、「事実」ベースの対立か「信念」ベースの対立か、目を配る習慣 が生まれた。
- 資料作成の過程で、原子力に関する意見の違いを超えて、相互の信頼は徐々に高まった。

(4) 理工系大学院学生を対象とした LLFP 核変換技術説明会【H30】

平成 30 年度では、科学技術に関しては少なくとも肯定的な見解を有していると期待できる、理 工系大学院学生(9名)を対象とした LLFP 核変換技術説明会を実施した。説明を受けて学生たちの 発話記録をコミュニケーション過程のモデルを参照し発話分析して、以下の知見を得ている。

- 説明者(LLFP 核変換研究者)側が感じた困難の内容を分析して、テーマに関する「科学的, 技術的知識の説明力不足に由来する問題点」と、より一般的な「コミュニケーション上のス キル不足に由来する問題点」に大別することができた。
- それぞれの問題点について、その改良方策、ならびにその改良方策のカテゴリー化を行い、
 比較的少数の<u>コミュニケーション指針</u>を導出することができた。
- これらの指針を活用しつつ、科学技術にある程度の共感性を有している市民と積極的に対話 することを通じて、LLFP 核変換技術の社会的受容が進展することが期待される。

上記のコミュニケーション指針を表 3.11.4-1 に示す。

指針	指針の内容
番号	
1.	関連する科学的、技術的知識を必要な詳細さで理解できていること
2.	理解している知識を、情報の受け手のニーズに適合させて説明できること
3.	科学技術開発のプロセスに関する知識を理解し説明できること
4.	「高レベル放射性廃棄物処分」に関する歴史的経緯も理解し説明できること
5.	「安全」を説明するための論理的方策を理解していて説明できること
6.	事実ベースの説明を心がけること
7.	傾聴を重視して、回答を急がない
8.	「市民向け説明」に特化した工夫をすること
	この指針8は、さらに複数のサブ指針によって構成されている。
8-1	専門語、業界用語の無自覚な使用は避ける。完全には避けられないが、その際に
	は「用語集」のような資料を配布する。
8-2	定量的な説明用の図面は、専門家向け資料を流用せず、市民向けに作る。
	なお、定量的な説明に際しては根拠や出典の明示が要求される可能性が高い
8-3	説明は、簡潔から詳細へ段階的に進める。
8-4	説明は、平板に羅列することを避け、できるだけ構造化する。
8-5	有効性が事前確認されていない「たとえ」を使うことは避ける

表 3.11.4-1 平成 30 年度の段階で導いている「コミュニケーション指針」

(5) 女性オピニオンリーダー層を対象とした LLFP 核変換技術説明会 (R1)

令和元年度は、原子力について理解のある女性オピニオンリーダー層を対象として、説明会を 開催し、コメントを受けた。対象者はWIN(Women in Nuclear)-JAPANで中心的な活動をされてい る7名である。原子力や核燃料サイクルに関しては、基本的理解を有している参加者であるが、 それだけに内容的にこれまでの説明会などでは経験しなかったような厳しい指摘も多数提示され ている。

参加者から得られた意見・指摘等の要約を、表 3.11.5-1 に示す。これらの意見・指摘等のうち、 上記の指針を遵守または多少の修正することを通じて対応できる場合には、その指針番号を明示 し必要な場合には修正内容を明示した。付録に説明に用いた資料を示す。

意	意見要旨(必要に応じ回答例	対応する指針番号
見	も示す)	または、追加すべき
番	Q:質問、C:コメント、A:回答	指針要旨
号	ただし、趣旨の類似した Q. C	
	は同じ意見番号の中に併記し	
	た。	
1.	C1:分離変換について物質と	指針 8-2 に対応して
	してのゴミの量は変わらない	いる。定量的説明の
	と書いてあるが、処分場の面	あり方に注意。
	積を100の1にできると言っ	
	ている。 <u>100 分の 1 の根拠が</u>	
	<u>分からない</u>	
	C2:先程も 100 分の 1 の表現	
	の話があったが、聞いている	
	方はきちんとした数値が重要	
	なのではなくて、 <u>半分になる</u>	
	<u>とか大まかな表現</u> で良いので	
	はないかと思う	
2.	Q:実現可能性のところで費用	指針 8-2 と関連。
	についての記述がないが、ど	費用の問題は、研究
	の程度かかるのか	者は当面は関心外と
	A:_一般の人はそういう経済	しがち。対社会説明
	的事よりも長く置いておくこ	として避けて通れな
	とへの不安感があるのでお金	い。概算でも目安と
	に換えられないものがある	根拠とを明示した
	Q: でも処分費が百倍になっ	い。(出来ない場合に
	たら	は言及しない)
	A: そこまではかからない	
3.	Q: 廃棄物の危険性がなくな	指針 5、8-2 と関連。
	るまでの時間というのはどう	安全を説明する際に
	いうことか	は、定義を明らかに
	A: 天然ウランのレベルを意	することに加えて、
	味している	その定義の合理性を
	C: だったらそう書くべき。何	示せること
	を危険と思うのかは人によっ	

表 3.11.5-1 令和元年度のインタビューを通じて得られた知見と「指針」との関係

	て違う	
4.	Q:分離変換技術があるなら、	指針 1, 4, 5 に関連。
	開発まで待って地上保管すれ	特定課題についての
	ば良いと言われたときにどの	解決・負担軽減と、地
	ように答えれば良いのか?	層処分技術全体との
	A:本研究は地層処分の負担軽	関係付け、さらに対
	減を目的にしており地層処分	外的説明の詳細度に
	を代替することを考えていな	関する配慮が必要
	ℓ ^ν ₀	
	Q:数百年で危険性がなくなる	
	なら、地層処分ではなく地上	
	で保管という考えも出てく	
	る。	
	A:全部の核種で核種変換によ	
	り地層処分が不要になる訳で	
	はない。	
	C:だとしたら、数百年で危険	
	性がなくなるというこの書き	
	方はミスリードになる	
5.	C:プルサーマルという言葉が	指針 8-1 に対応。原
	いきなり出るのはどうか。再	子力専門家は普通に
	処理で作った燃料とか説明が	使うかもしれない
	いるのではないか	が、少なくとも自明
		の言葉として使うこ
		とは避けたい
6.	C1: 持続時間(半減期)とあ	指針 8-1 に対応。こ
	るが、持続時間と半減期との	れらの用語を全く使
	違いが不明確。	わずに説明すること
	C2:「バックエンド」という言	は容易ではないが、
	葉が出てくるが一般的ではな	例えば、初めて聞く
	V)	人、多少知識のある
	C3: 実効半減期や <u>サポートレ</u>	人、かなり詳しい人、
	<u>シオ</u> という用語の理解が難し	のように、違う属性
	V)	の相手向けに専門用
	C4: 原子力の廃棄物の問題	語の利用を調整した
	(バックエンド問題)とある	説明資料は用意して
	が、バックエンドと言わなく	おきたい。なお、 <u>サポ</u>

	てもいいのではないか	<u>ートレシオ</u> について
	C5: 反応度の基礎特性云々は	は、理解困難という
	専門的すぎる C6: 「原子炉の	意見が繰り返し表明
	性能が落ちる」という言葉の	された。原子力発電
	意味が分からない。落ちると	についての基本知識
	どうなるのか、危険になるの	がある受け手でも理
	カ	解は困難と考えるべ
	C7: マイナーアクチノイド、	き
	同位体、ブランケット等の意	
	味も分かりにくい	
7.	C1: 燃えないゴミ、燃やせる	指針 8-1 に対応。燃
	ゴミ、燃えるゴミ、等の言葉	えない、燃えるとい
	があったが (中略)意思を持	う自然特性を表す表
	った言葉として「燃やすゴミ」	<u>現</u> と、燃やす、燃やさ
	「燃やさないゴミ」という表	ないという技術者の
	現の方が適切と感じた	<u>意思を反映した表現</u>
		を混用しないこと
8.	C1: 分離変換がなぜ必要なの	説明の論理構成につ
	かということが出てくるのが	いての工夫も試みら
	遅いが、長寿命の核種が重要	れるべき
	であることを早い時期に示す	
	必要であろう	
9.	Q1: この変換特性はどの高速	「計算結果から言え
	炉でも同じか?」	ること」と「本質的・
	A1:これはもんじゅを想定し	一般的に言えるこ
	ているが、どちらかというと	と」を意識した説明
	小型炉の方が効率的に変換で	方策が必要
	きると考えている	
10.	Q1: 表にある6核種について	当初、7核種を対象
	説明されたが、なぜこの6核	と考えていたが、本
	種なのか	研究では4核種だけ
	A1: ヨウ素とセレンは公衆へ	に絞っていて、それ
	の被曝の観点から重要;セシ	でも有効であるとい
	ウムはもともとそれ自体の線	う主張と、初めの段
	量自体が問題;(中略) 最初	階で説明された、処
	に対象にしたのは7核種でス	分場の面積が <u>100 分</u>
	ズも含んでいたが、スズは断	<u>の1</u> になるとか、廃

	面積が小さすぎて変換されな	棄物の危険性がなく
	い。まずは4核種に関してな	なるまでの時間が短
	るべく早く減らすことを考え	くなるという効用の
	て検討した例である	主張との関係が分か
		りにくい
11.	Q1: この技術自体の実現可能	このような <u>ロードマ</u>
	性が 100%に対して今は何%	<u>ップ</u> 型の説明は避け
	程度の段階なのか、いつ頃が	て通れない。基本的
	目途なのか、いつ頃ジャッジ	(科学的)な実現可
	されるのか、そこからへんを	能性評価から、技術
	聞かせてもらいたい	的実現可能性評価
	A1: 今の位置付けは基礎的な	へ、さらに産業技術
	研究の段階で、それがいける	としての実現可能性
	かどうかを判断し、次の段階	評価へ、と進む方式
	で小規模な照射試験で実証、	は、技術開発の基本
	次から実際に設計する	シナリオだが、社会
		的に共有されている
		訳ではない
12.	C1: 計算結果は表よりも図で	いずれも妥当な指摘
	示した方が良い	である。原子力専門
	C2: 高レベル放射性廃棄物の	家はコミュニケーシ
	地層処分がなくなるという言	ョン実践に際して、
	葉は基本的に使わず負担が低	強い反対意見の持ち
	減できるというべき	主を想定しがちであ
	C3: 原子力反対/推進の人で	るが、 <u>基本的には中</u>
	はなく中間層を訴求対象とし	<u>間層を想定</u> すべきで
	て考えるべき	ある

説明会全体を通して、定量的表現の適切さについては厳しい指摘がなされた。特に「処分場の 面積が100分の1になる」「放射線の危険が数百年で無くなる」などの言い方に対しては、条件の 明示が強く求められた。また、研究プロジェクト全体のロードマップ的表現の必要性も指摘され た。用語に関しては、サポートレシオ、実効半減期などに関して、分かりにくいという指摘が繰 り返しなされている。これらの用語を用いた説明が避けて通れないのか、代替の説明方策として はどのようなやり方がありうるのか、今後の検討課題と考える。

(6) 考察

ここまでの検討は、既に述べたように課題(1)すなわち、説明すべき技術コンテンツの複

雑さに起因する困難と、**課題(2)**すなわち、説明を提供すべき相手の見解や信念の多様性に起 因する困難に主として着目し、**対話実践ベースの検討**を行なってきた。実際には、これらの実践 ベース検討からの知見に加えて、社会心理学、リスク心理学、科学技術コミュニケーション論な どの分野で蓄積されている学術知も的確に適合化し反映することが望ましい。そのような観点か らの検討結果を以下に要約した。

ノンテクニカルスキルとしての対話能力

最近のヒューマンファクター研究の分野では、技術の安全性を高めるための必要条件として、 技術そのものに関する能力 (テクニカルスキル) と技術の運用や管理をより効果的に行うための 非技術的能力 (ノンテクニカルスキル)の両方が重要であるという考え方が主流となりつつある。 航空機運航の例で言えば、航空機を安全に操縦して出発地から目的地まで確実に移動させるため に必要な技術的能力がテクニカルスキルである。一方、運航途中で航空管制官や乗務員達との間 で、状況や課題、さらに解決すべき課題に関する優先順位などについて認識を共有する、エラー を起こしにくいコミュニケーションを実行する、役割分担を適切に調整するなど、テクニカルス キルとは質的に異なるが欠かせない能力がノンテクニカルスキルである。

この考え方を技術開発者と市民との関係マネジメントに適用すれば、LLFP 核変換研究を的確に 推進できる研究者としての能力はテクニカルスキル、その研究内容について、市民側の懸念を的 確に受け止めて、過不足ない形で回答を提示できる能力が、ノンテクニカルスキル、と位置づけ ることが可能であろう。LLFP 核変換技術の社会的受容性向上を目指す本報告は、技術研究者が上 記の意味でノンテクニカルスキルを向上させるための実践的知見を提示しようとした試みと考え ていただければ幸いである。

論点限定方式の内包する困難性

LLFP 核変換技術が実用化できれば、その技術的・社会的効用は大きいのだから、原子力発電や核 燃料サイクル論よりも、もっとLLFP 核変換技術に的を絞って、社会的受容が進むための研究をす べきではないか、という意見も主として原子力関係者の中にあることは承知している。しかし現 実の対話では、理工系大学院生を対象とした場合でさえ、そのような論点限定的な設計をするこ とに対しては批判の声が高い。このような場をあえて設けたとしても、論点限定への反発が強く 建設的な討論が期待できないなど、場の運用上の困難が大きいことが容易に想定される。地層処 分や核燃料サイクルに関する討論も視野に含めた形で LLFP 核変換技術に関する対話を行う、とい う方式でないと対話は入り口で頓挫する、という状況が一般的である。このように考えるのが本 研究の立場であることを付記する。

(7) まとめ

LLFP 核変換の社会的受容性向上について、説明方法の検討、一般の人へのアンケート調査、理 工学学生および原子力について理解のある女性オピニオンリーダーへの説明会と意見聴取により 検討した。本報告では、課題(1)、説明すべき技術コンテンツの複雑さに起因する困難と、課題 (2)、説明を提供すべき相手の見解や信念の多様性に起因する困難との両面に着目して実践的に 検討を進めた結果を示している。課題(1)に関しては、表 3.11.4-1の「コミュニケーション指 針」を基本としつつ、必要に応じて、表 3.11.5-1に示した具体的な留意点まで目配りすることで 困難の低減は可能と考える。課題(2)に関しても、表 3,11.4-1、表 3.11.5-1 は活用可能であ る。なお、原子力に関する基本的姿勢の対立から対話が困難な市民に対しては、平成 29 年度の報 告で提示した共考・協働アプローチによる信頼の段階的獲得を図ることが合理的と考える次第で ある。 付録1 LLFP の社会科学的意義に関する説明資料(2020年1月22日使用)

長寿命放射性廃棄物の分離変換について

2020年1月22日

東北大学

<u>内容</u>

1

2

- ・原子力の廃棄物の問題(バックエンド問題)
- 分離変換について
- ・分離変換に期待される効用
- 分離変換技術開発上の課題
- 分離変換技術の研究開発状況

物質としての量(ゴミの量)は変わらないが、放射線を出す力(放射能)と持続時間(半減期)を格段に低減できる。

分離変換に期待される効用
 ・放射性廃棄物処分の技術的困難を大幅に減らす
 ことができる。 高い放射能を持つ物質を減らすことができる。 長い半減期を持つ物質を減らすことができる。 批判論の大きな拠り所である「10万年、100万年先まで の安全性を保障することなどできるわけがない」への効 果的な反論が可能になる。 ・地層処分場の面積も100分の1にできる可能性 < 廃棄物の危険性がなくなるまでの時間の比較>

- ゴミの弁別をしない場合 \rightarrow 約10万年
 - ゴミの分別だけを行う場合 →数千年
- ・ 弁別して燃やせるゴミを燃やした場合 →数百年

8

分離変換技術の開発上の課題

- そもそも、実効性のある分離技術、核変換技術が開発できるか疑問。
- 分別した後の燃やせるゴミを「どのようにして燃やすか」が 課題。
 - 原子炉の中に入れて「燃やす」必要があるが、別の物質になって も安定で短寿命でなければならない。
 - 原子炉で燃やすために原子炉の性能が落ちる。
- 燃やすための原子炉として予定していた「高速増殖炉もんじゅ」が廃炉となり使えない状況
- 分離変換処理は新たなコストとなり処分費用が増大する。
- まだ技術的に未確立な部分が多く、実現に向けては不確 実性が大きい。そんな技術の開発に膨大な国費を投入す ることは誤り。

分離変換技術の研究開発状況(1)

高速炉を用い、6つの長寿命核分裂生成物 (LLFP:セレン-79,ジルコニウム-93,テクネチウ ム-99,パラジウム-107,ヨウ素-129,セシウム-135)を短寿命(または安定)に効率的に変換 するシステムを構築する。そのために、反応の 基礎データ、変換特性、熱特性、集合体設計、 LLFP材料特性、LLFP製造、LLFP回収技術、照 射試験計画、社会的の意義等、総合的な検討 を行っている。

2016年度から2019年度末まで、東工大、東北大、東京都市大学、日本原子力研究開発機構の共同研究で実施

分離変換技術の研究開発状況(2)			
成果:高速炉による6核種の変換特性			
LLFP	物理的半減期	実効半減期 (年)	サポートレシオ
セレン-79	29 万 5千年	16.8	78.4
ジルコニウム -93	150 万年	39.8	4.8
テクネチウム -99	21 万 3千年	32.5	2.8
パラジウム -107	650 万年	28.4	4.2
ヨウ素 -129	1570 万年	213	3.2
セシウム -135	230 万年	518	1.6
実効半減期∶装荷LLFPが核変換により半分となるまでの期間			

サポートレシオ:変換LLFP/生成LLFP

11

LLFP	物理的半減期	実効半減期 (年)	サポートレシ オ
セレン-79	29 万 5千年	6.3	28.2
テクネチウム -99	21 万 3千年	8.4	4.3
パラジウム -107	650 万年	8.3	1.8
ヨウ素 -129	1570 万年	8.9	1.5

実効半減期:装荷LLFPが核変換により半分となるまでの期間 サポートレシオ:変換LLFP/生成LLFP 2020年1月14日、4機関でプレス発表

12

3.12 研究推進

3.12.1 プロジェクトの総合推進【H28-R1】

本プロジェクト全体を適切に遂行するために、再委託者との連絡を緊密に取り、さらに定期的 な会合を開催することで進捗状況を把握し事業を滞りなく進めるための調整を実施した。プロジ ェクトの成果については随時電子メールで情報共有を行い、問題点や課題、進捗状況を共有、議 論した。

平成 28 年度には 2016 年 10 月 17 日/2016 年 12 月 19 日/2017 年 3 月 3 日の日程で合計 3 回の会 合を開催した。平成 29 年度には 2017 年 5 月 9 日/2017 年 7 月 5 日/2017 年 9 月 8 日/2017 年 10 月 30 日/2017 年 11 月 10 日/2017 年 11 月 27 日/2017 年 12 月 25 日/2018 年 1 月 12 日/2018 年 1 月 26 日/2018 年 3 月 15 日の日程で合計 10 回の会合を開催した。平成 30 年度には 2018 年 5 月 10 日/2018 年 6 月 8 日/2018 年 7 月 30 日/2018 年 8 月 30 日/2018 年 10 月 5 日/2018 年 11 月 9 日 /2018 年 12 月 25 日/2019 年 1 月 29 日/2019 年 3 月 4 日の日程で合計 9 回の会合を開催した。

令和元年度は以下の日程で全8回にわたり、再委託先を含めた全体会合を実施した。

● 第1回全体会合:

日時:2019年4月26日(金) 13:30 - 17:10

- 場所:東京工業大学先導原子力研究所北1号館1階会議室
- 参加者: 若林(東北大)、田原(東京都市大)、舘(JAEA)、

千葉、吉田、山野、望月、石塚、稲倉、椿原(東工大)

オブザーバー:坪井(東芝)、藤又、藤村、渕田(日立 GE)

議題: 1. 全体概況の共有

- 2. 今年度各機関の達成目標確認および契約状況の確認
- 3. 各機関における進捗報告・今年度計画報告
- 4. 最終年度としての今年度の進め方について
- 5. 次回会合の開催日時および議題の確認
- 第2回全体会合:

日時:2019年6月24日(月) 13:00 - 17:15 場所:東京工業大学先導原子力研究所北1号館1階会議室 参加者:若林(東北大)、田原(東京都市大)、舘(JAEA)、

千葉、山野、望月、石塚、稲倉、椿原(東工大)

オブザーバー:坪井(東芝)、藤村、渕田(日立GE)

- 議題: 1. 全体概況の共有
 - 2. 各機関における進捗状況
 - 3. LLFP サイクルおよび核変換炉心の設計についての議論
 - 4. 次回会合の開催日時および議題の確認
- 第3回全体会合:

日時:2019年7月30日(月) 13:30-16:45

3.12-1

場所:東京工業大学先導原子力研究所北1号館1階会議室

参加者: 若林(東北大)、高木、田原(東京都市大)、

千葉、山野、吉田、望月、稲倉、椿原(東工大)

- オブザーバー:坪井(東芝)、藤村、藤又、渕田(日立GE)、朝野(RWMC)
 - 議題: 1. 全体概況の共有
 - 2. H30 年度業務計画書・委託業務完了届・成果報告書の整合性確認
 - 3. 各機関における進捗状況
 - 4. 次回会合の開催日時および議題の確認
- 第4回全体会合:
- 日時:2019年8月29日(木) 13:30-17:25
- 場所:東京工業大学先導原子力研究所北2号館5階523講義室
- 参加者: 若林(東北大)、高木、田原(東京都市大)、

千葉、山野、吉田、望月、稲倉(東工大)

- オブザーバー:坪井(東芝)、藤又、渕田(日立GE)、朝野(RWMC)
 - 議題: 1. 議題全体概況の共有
 - 2. 各機関の進捗報告
 - 3. LLFP ターゲット装荷炉心の核特性解析の今年度指針についての議論
 - 4. 地層処分の観点からの LLFP 核変換についての検討
 - 5. 次回会合の開催日時および議題の確認
- 第5回全体会合:
- 日時:2019年10月10日(木)10:00-13:00 場所:東京工業大学大岡山北2号館5階523講義室 参加者:若林(東北大)、高木、田原(東京都市大)、
 - 千葉、望月、石塚、稲倉(東工大)
- オブザーバー:坪井(東芝)、藤又、藤村、渕田(日立GE)
 - 議題: 1. 全体概況の共有
 - 2. 各機関の進捗報告
 - 3. 常陽での照射試験についての議論
 - 4. P0 フォローに向けての準備
 - 5. 春の原子力学会でのシリーズ講演に関する議論
- 第6回全体会合:

日時:2019年12月6日(金) 13:30-17:00

- 場所:東京工業大学先導原子力研究所北1号館1階会議室
- 参加者: 若林(東北大)、高木、田原(東京都市大)、舘(JAEA)、

千葉、望月、山野、吉田、石塚、稲倉(東工大)

オブザーバー:坪井(東芝)、藤又、藤村、渕田(日立GE)、朝野(RWMC)

議題: 1. 全体概況の共有

- 2. 令和元年度 P0 フォローについての報告
- 3. 春の原子力学会シリーズ発表での内容確認
- 4. 各機関の進捗報告
- 5. 今後の方向性についての議論
- 6. 次回会合の開催日時および議題の確認
- 第7回全体会合:
- 日時:2019年1月20日(月) 13:30-17:30
- 場所:東京工業大学先導原子力研究所北1号館1階会議室
- 参加者: 若林(東北大)、高木、田原(東京都市大)、舘(JAEA)、
 - 千葉、吉田、山野、石塚、稲倉(東工大)
- オブザーバー:坪井(東芝)、藤又、藤村、渕田(日立 GE)、大木(JAEA)、朝野(RWMC)
 - 議題: 1. 全体概況の共有
 - 2. 投稿論文、特許、プレスリリースについての報告
 - 3. 高速炉開発の状況についての解説
 - 4. 各機関の進捗報告
 - 5. 成果報告書原案についての議論
 - 6. 次回会合の開催日時および議題の確認
- 第8回全体会合:
- 日時: 2020年2月25日(火) 13:30 17:10
- 場所:東京都市大学世田谷キャンパス3号館4階メモリアルホールB
- 参加者:若林(東北大)、高木、田原(東京都市大)、舘(JAEA)、
 - 千葉、吉田、山野、稲倉、(東工大)
- オブザーバー:坪井(東芝)、藤又、藤村、渕田(日立GE)
 - 議題: 1. 全体概況の共有
 - 2. 各機関の進捗報告
 - 3. 各機関の達成度確認
 - 4. 成果報告書のまとめ方についての議論

3.12-2 全体まとめ【H28-R1】

平成 28 年度から平成 30 年度においては、各年度の成果のまとめを行い、成果報告書のとりま とめを行った。最終年度は令和元年度における成果のまとめを行い、次期計画策定への反映と最 終年度報告書の作成と取りまとめを行った。

4. 結言

研究課題「高速炉を活用したLLFP核変換システムの研究開発」に関して、4ヶ年計画の最終年である令和元年度の主要な成果を以下にまとめる。

(1) LLFP 中性子核データの評価検討

LLFP 核種断面積の共分散ファイルの作成および核変換率の誤差推定を行った。LLFP の 6 核種 ¹²⁹I、⁹⁹Tc、⁷⁹Se、¹⁰⁷Pd、¹³⁵Cs、⁹³Zr の共分散ファイルを作成し、本業務で構築した Total Monte Carlo 法を用いて3つの炉心を組み合わせた6核種核変換システムにおける中性性断面積誤差に 起因する核変換率の誤差を求め、サポートファクター(SF)の誤差を推定した。ノミナル値として はすべての核種で当初想定していたシステム全体として SF>1 を達成できているものの、⁹³Zr、 ¹⁰⁷Pd と ¹³⁵Cs については1標準偏差以内で1以下となる可能性、⁷⁹Se、⁹⁹Tc、¹²⁹I については2標 準偏差以内で1以下となる可能性があることが分った。また、全く実験データの存在しない ⁷⁹Se の SF の誤差が 40%にも達することが分った。従ってこのような核変換システムを構成する場合、 核データの誤差を定量的に評価することと核データの精度をさらに高めることが必要性であるこ とが分った。

(2) 高速炉での核変換ターゲット集合体の配置、交換法(再委託先:東北大学)

①配置、交換法の検討

LLFP 核種のターゲット集合体(減速材含む)を、高速炉のブランケット領域および遮蔽体領域 に装荷する場合の配置、交換法を検討し、炉心核特性解析を実施し、核変換特性、サポートファ クター等との関係を明らかにした。これにより、優れた核変換特性を持つ核変換ターゲット集合 体の配置、交換法をまとめた。

LLFPの元素分離での再処理の適合性の点でI、Tc、Se、Pdを別に扱うことを考えて3つの炉心を組み合わせた6核種核変換システムを検討した。6核種全てSF>3(システム全体としてSF>1)となるシステムを構築でき、且つ¹²⁹I、⁹⁹Tc、⁷⁹Se、¹⁰⁷Pdは3%程度の高い核変換率とすることができた。

6 核種の3 基炉心から¹³⁵Cs と⁹³Zr を除く4 核種とすると SF>3 で且つ増殖比1を確保する持続 性のある高速炉核変換システムを構築することができた。

IとSeは地層処分での被ばくの支配核種であることを鑑み、Pdを除くI、Tc、Seの3核種に 対し1 炉心で3核種それぞれSF>3となる炉心を設定した。本炉心にブランケット有炉心と組み 合わせ2基組で増殖比を1程度、あるいはブランケット有炉心2基と組み合わせてLLFPを減量 しつつ増殖比を1以上とできる持続性のある高速炉核変換システムを構築できた。

本研究で構築された炉心システム概念を将来の社会情勢に応じて適宜取捨選択することでLLFP を系外に放出しない高速炉システムを構築でき、原子力が広く社会から受容されうるエネルギー 源として選択される可能性を拓くことができた。また、SFに余裕のある場合には軽水炉サイクル で発生した LLFP を高速炉システムで変換することも可能となるため、軽水炉の負の遺産を解消 する役割を高速炉が果たせることを示すことができた。

(3) LLFP ターゲットを含む炉心特性

① 炉心特性(再委託先:東京都市大学)

LLFP 核変換の最適化炉心について炉心特性解析評価を行った。

LLFP6 核種の核変換を目的とする3種類の炉心 A, B, Cの炉心特性を評価した。その結果、燃焼

反応度と最大線出力は炉心 B が最も高くなったため、代表として炉心 B を対象に炉停止余裕と出 カ分布、出力ピーキングの評価を行った。炉心 B はもんじゅ炉心と同等の炉停止余裕を有するこ とを確認したが、ブランケットが削除されたため最大線出力は制限値 360 W/cm を超過した。この ため、燃料溶融を防止する観点から対策をまとめ、実施が現実的と考えられる燃料ペレットの高 密度化と中空化の効果について検討した。その結果、中空径 1 mm、燃料ペレットの製造密度を 90%TD とすることで過出力状態を考慮しても燃料溶融を防止できる見込みが得られた。 ②熱特性

LLFP 核変換炉体系における冷却材流量配分を決定し LLFP ターゲットの熱的健全性を評価した。 LLFP 集合体の配置が適切になったことによって、炉心入口流動抵抗を変更することなくブラン ケットを LLFP 集合体で置き換えて照射しても駆動炉心の健全性には問題を生じないことが明確 になった。一方、第9リングに装荷される YH₂-BaI₂ のピンは、ペレット中心温度がギャップ部の ガス組成に左右される。初期に 2MPa で封入した He (100 モル%) が、照射で発生した Xe ガスで 薄まって約 20%に減少するまでは温度制限値以内で照射できる。このペレットに最大 1.8 mmの中 心孔を設けた場合には、より大きな余裕をもって照射が行える結果になった。

③安全性(再委託先:東京都市大学)

最適化炉心についてターゲット集合体ピンの破損を想定し安全性の評価を行った。また、ター ゲットピンの破損検出方法概念を検討、提案した。

最適化炉心を対象に安全性に影響を与えると考えられる3項目(LLFPピン内のペレット移動に よるサーマルスパイク、減速材による流路閉塞、炉心部への水素・重水素混入)について評価を実 施した結果、いずれの事象も燃料ピンの出力は過出力係数(116%)以下であり燃料ピンの健全 性は維持されることを確認した。

また、もんじゅの破損燃料検出系と常陽に導入が検討されている RIMS (Resonance Ionization Mass Spectrometry:レーザー共鳴イオン化質量分析法)を調査し、LLFP ターゲットピンの破損検 出方法について検討した。その結果、タグガスの充填範囲を LLFP ターゲット集合体まで拡張し、 CG 法 FFD (Cover Gas. Failed Fuel Detection:カバーガス法破損燃料検出装置)とタギング法 FFDL (Failed Fuel Detection and. Location:破損燃料位置検出装置)または RIMS の組み合わせ を用いることにより、LLFP ターゲットピンの破損を検知できる見通しが得られた。

(4)核変換ターゲット集合体の構造設計(再委託先:東北大学)

①集合体設計

(2) で検討した結果を基にして、LLFP 核種のピン構成、集合体構造の最適化を行った。また、 LLFP 核種を装荷したピンの温度評価、ピン圧力評価を行い、健全性を確認した。

それぞれの LLFP 元素をいれたペレットを装荷した集合体について、ブランケット燃料と同一 とするが、複数の炉心を組み合わせた核変換システムで燃料集合体下部ブランケット部と Cs を 装荷した集合体は Zr 装荷量を増やすために太径ピンに形状を調整した。また、Xe の発生による 内圧の上昇、さらに発熱が大きい上にギャップコンダクタンスの低下による温度上昇が発生する BaI2ピンに対して温度、内圧、CDF(Cummulative Damage Funciton : 累積損傷関数)の評価を行 った。その結果、初期 He 封入圧を大きくして Xe によるギャップコンダクタンス低下を緩和する ことで、3年の燃焼では燃料温度は制限値以下にすることができた。また内圧は3年で 100kg/cm²以下であり、CDF も制限目安を十分下回ることから健全性を確認した。

(5) 大型高速炉での適用性評価(再委託先:東北大学)

大型炉への適用解析

大型高速炉に対して、今まで検討してきた LLFP 変換手法を適用し、核特性、炉心特性、安全 性を解析し、大型高速炉での適用性を評価した。

原型炉クラスの高速炉での評価に基づき、Tc+(BaI₂+YH₂)の LLFP 集合体を装荷した炉心を評価 した。その結果、増殖比>1、SF>1 であることを確認した。

安全性にかかる反応度係数は、ボイド反応度、ドップラー係数とも LLFP を径ブランケット第 1層に装荷しても殆ど影響がないことが確認でき、安全性は LLFP 集合体を装荷しない場合と同 等であると考えられることが分った。

(6) 核変換ターゲット構造材料の物性(再委託先:原子力機構)

①強度特性への影響評価試験

SUS316 鋼と Tc を除く 5 種類の LLFP 候補化合物の共存性試験前後の状態において引張試験を実施 し、LLFP 核変換ターゲットの候補形態が被覆管材料の強度特性に及ぼす影響を評価した。5 種類 の LLFP 候補化合物のうち ZnSe、Zr、Pd と共存性試験を行った試験片には変色が認められたもの の強度特性に大きな変化は無かった。また、BaI₂、Cs₂CO₃ と共存性試験を行った試験片では、変 色とともに試験片表面の変質が認められ、一様伸びや全伸びがやや低下したが、引張強度や 0.2%耐力には大きな低下は認められなかった。これらの結果から、各 LLFP 候補化合物が被覆管 材料の強度特性に及ぼす影響は大きくないことが明らかとなった。

(7) 核変換ターゲットの製造(再委託先:原子力機構)

①模擬回収 LLFP 製造試験

ヨウ素およびセシウムについて、再処理工程を模擬したプロセスから回収しそれぞれを用いて 核変換ターゲット用の候補化合物(BaI₂、Cs₂CO₃)を製造した。各候補化合物の構造解析と不純 物分析を行い、それら候補化合物の特性を明らかにした。また、重水素化物を減速材とし非放射 性の LLFP 元素からなる模擬 LLFP ターゲットを試作し、製造性を明らかにした。試作する模擬 LLFP ターゲットは平成 30 年度までに検討した粉末混合焼結型と混合複合体型の2 種類とした。

Ag 系吸着剤からの回収ヨウ素を用いた BaI2製造からは、主に A1、Si が不純物として随伴する とともに、ヨウ化水素製作過程が BaI2の製造上で重要なポイントになることが明らかになった。 一方、模擬放射性廃液から抽出したセシウムを用いた Cs₂CO₃ 製造では、主に Ba が不純物として 随伴するが、これは Cs 抽出や Cs₂CO₃ 合成に用いた試薬に由来するものと推測された。

また、粉末状と細孔付ペレット状のイットリウムを重水素化し、BaI₂および Cs₂CO₃に対して混 合粉末焼結型と混合複合型の LLFP ターゲットが製造可能であることを確認した。重水素化イッ トリウムと BaI₂の混合粉末焼結ではそれぞれの粒径調節により従来困難であった混合比でも焼結 できる見通しが得られた。これにより、いずれの型でのターゲットについても製造に見通しが得 られた。

(8) LLFP 回収技術の検討(再委託先:原子力機構)

①再処理回収ロス率の評価

先行研究や文献の調査により 6 種の LLFP の再処理工程からの分離回収におけるロス率を評価 した。一部、模擬元素を用いた溶媒抽出実験を実施し、ロス率を実験的に評価した。 また、LLFP サイクルに関するマテリアルフローを調査・検討し、再処理工程での分離回収、高 速炉による核変換、その後のリサイクルにおけるマテリアルバランスを評価した。

6種のLLFPのうち、Tc、Pd、Csについては過去の群分離研究の成果から1~2%程度のロス率 と推定された。Se、Zr、Iについては移行挙動や除去率、吸着率の研究成果等からロス率は1% 程度と推測された。Tcを模擬した Re と Pdの模擬廃液からの溶媒抽出実験からは、それぞれの ロス率は約30%および約10%と見積もられた。これらのロス率の改善のためには抽出条件の最 適化や抽出方法の多段化が必要となることが明らかとなった。

LLFP サイクルにおけるマテリアルバランスとして、⁹³Zr、⁹⁹Tc、¹²⁹I および ¹³⁵Cs は一定期間の 照射後のリサイクル処理により持続的なサイクルを維持できることが明らかとなった。一方、 ⁷⁹Se と ¹⁰⁷Pd は同位体が多く元素分離のリサイクル処理ができないが、一定期間炉内装荷すること で最大 90%近くまで変換できる見通しが得られた。

(9) 照射試験計画(再委託先:東京都市大学)

①照射試験計画の策定

核変換特性、集合体の健全性を確認するために高速炉を用いて核変換ターゲット集合体1体を 照射する照射試験計画を策定した。

日本原子力研究開発機構の高速実験炉「常陽」を用いて、天然 Cs と減速材(YH₂ または YD₂) からなるターゲット集合体1体を照射する核的検討を行うことにより、LLFP 核変換の実証性を示 すための照射集合体および照射場を構成することができた。その結果、照射により生成される LLFP 核種である¹³⁵Cs を含む Cs 同位体およびそれらの中性子吸収と崩壊により生じる Ba 同位体 の生成量を評価することができた。これらにより、照射後試験で同位体組成が測定されれば積分 実験として核変換の実証性を定量的に示すことができる。

(10) 社会科学的意義(再委託先:東北大学)

1調査・分析・まとめ

LLFP 核変換の社会的受容性に関する説明方法、理解度調査のまとめを行った。

原子力について理解のある女性オピニオンリーダー7名を対象として、説明会を開催し、コメントを受け、それを反映した説明方法をまとめた。

(11) 研究推進

①研究の総合推進

本業務全体を適切に遂行するために再委託者との連絡を緊密に取り、さらに定期的な会合を開 催することで進捗状況を把握し業務を滞りなく進めた。また定期的な会合を開催し再委託先との 連絡を緊密に取り、各機関における研究の進捗状況の把握および連携の効率化を図り、成果の出 版[1-6]およびプレスリリース[7-10]、特許申請[11]を適宜実施し事業を滞りなく進めた。これ らは業務期間の4年間における主要な成果である。

4件のプレスリリースのうち、高速炉技術を利用した核変換システムを利用した長寿命核分裂 生成物に短寿命化に関するプレスリリース[7,10]は特に大きな注目を集め、日本経済新聞をはじ めとする国内外の多くのメディアで取り上げられた。その結果、衆・参議員会館内にて、政・ 財・官・学・民による エネルギー・環境問題に関する国家的課題について検討する 政策シンク タンク「時代を刷新する会」にて本研究内容について講演する機会にも恵まれた[11]。また本業 務で構築した核分裂収率ライブラリ[6]は、次期 JENDL に採用されることが決まっている。以上のように、本事業では多岐にわたり重要な成果をあげることができた。

②全体まとめ

平成28年度から令和元年度における成果のまとめを行い、報告書類の作成を行った。 本業務における研究活動を総括し、結論をまとめ成果報告書の作成を行った。未出版の成果については引き続き論文作成を行っていくこととした。

以上、4ヶ年計画の最終年である本年度の業務項目全てを実施し、全ての項目について計画目 標を達成した。

【参考文献】

- S. Chiba, T. Wawkabayashi, Y. Tachi, N. Takaki, A. Terashima, S. Okumura and T. Yoshida, "Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors", Scientific Reports 7, 13961(2017).
- [2] M. D. Usang, F. A. Ivanyuk, C. Ishizuka and S. Chiba, "Correlated transitions in TKE and mass distributions of fission fragments described by 4-D Langevin equation", Scientific Reports 9, 1525(2019).
- [3] T. Wakabayashi, M. Takahashi, S. Chiba, N. Takaki, Y. Tachi and Y. Tahara, "Core concept of simultaneous transmutation of six LLFP nuclides using a fast reactor", Nucl. Eng. Design 352, 110208(2019).
- [4] T. Wakabayashi, Y. Tachi, M. Takahashi, S. Chiba and N. Takaki, "Study on method to achieve high transmutation of LLFP using fast reactor", Scientific Reports 9, 19156(2019).
- [5] C. Ishizuka, X. Zhang, M. D. Usang, F. A. Ivanyuk and S. Chiba, "Effect of the doubly magic shell closures in ¹³²Sn and ²⁰⁸Pb on the mass distributions of fission fragments of superheavy nuclei", Phys. Rev. C 101, 011601(R), Rapid Communication.
- [6] K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, F. Minato and S. Chiba, "Systematic Evaluation of Independent Yields Based on Nuclear Shell Correction and Boltzmann Weight" (to be submitted to J. N. S. T.)
- [7] 東工大プレスリリース『長寿命核分裂生成物を飛躍的に短寿命化する高速炉技術を利用した 核変換システムを提案』、https://www.titech.ac.jp/news/2017/039840.html
- [8] 東工大プレスリリース『核分裂生成物の二つの転移機構を同時に説明可能な理論構築』、 https://www.titech.ac.jp/news/2019/043509.html
- [9] 東工大プレスリリース『長寿命核分裂生成物の半減時間を 9 年以下に短縮』、 https://www.titech.ac.jp/news/2020/046068.html
- [10] 東工大プレスリリース『超重原子核の新たな核分裂機構を解明』、 https://www.titech.ac.jp/news/2020/046173.html
- [11] 高木直行、『原子炉での核変換を応用した核廃棄物処理および希少元素製造技術』、政策 シンクタンク「時代を刷新する会、環境技術 環境技術委員会 委員会、2018/6/14, 衆議院

第二議員会館第8会議室)

[12] 特許申請(東京都市大学)(2020年3月17日、特願2020-046979)