平成27年度

文部科学省 国家課題対応型研究開発推進事業 原子カシステム研究開発事業

原子力発電機器の強度保証のための 高信頼性に関する研究開発

成果報告書

平成28年3月 国立大学法人 東北大学

本報告書は、文部科学省の英知を結集した原 子カシステム研究開発事業による委託業務と して、国立大学法人東北大学が実施した平成2 4-27年度「原子力発電機器の強度保証のた めの高信頼性に関する研究開発」の成果を取り まとめたものです。

目次

概略		XI
1. は	こじめに	
1.	1研究の狙い	1.1
1.	2 背景 ······	1.2
1.	3研究構想 ····································	1.3
2. 業	務計画	
2.	1 全体計画 ····································	2. 1
3. 平	- 成 24-27 年度の実施内容及び成果	
3.	1 新超音波法の開発	3. 1–1
3.	2 新 X 線計測技術の開発(再委託先:金沢大学)	3. 2–1
3.	3 新超音波法と新 X 線計測技術の適用性の検証(再委託先:発電技検)	3. 3–1
3.	4 研究推進委員会 ····································	3.4
4. 結		
4.	1 総まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4. 1
4.	2 今後の展望 ·····	4. 2

表一覧

表 3.1.1-1	圧電素子種別、サイズと素子基本特性(5MHz)・・・・・・・・・・3.1-6
表 3.1.1-2	作製したき裂一覧・・・・・・3.1-16
表 3. 2. 2-1	図 3.2.2-4 のフーリエ係数。 [参考文献(2)]の Table 4 より抜粋・3.2-26
表 3. 2. 3-1	一部が欠けた回折環から求めた応力値
	(左列はデータ図 3.2.3-17 参照)。
	中央列が cosα 法による値(N. A. は計算不能の意) ······3.2-44
表 3. 2. 3-2	各X線応カ測定法の測定誤差の見積もり
	(δε = 10 ⁻⁴ と、回折環上の測定点数を 72 と仮定。
	[参考文献(10)]の Table 4 から抜粋。) · · · · · · · · · · · · · · · · · · 3.2-50
表 3. 2. 3-3	評価に用いた試験片の詳細
	([参考文献(15)]の Table 1より転載。) ・・・・・・・・・・・・・・・3.2-52
表 3. 2. 3-4	応力試験片の σ_x の測定値 (MPa)
	([参考文献(6)]の Table 4 を転載。) ・・・・・・・・・・・・・・・・・・・・・・3.2-54
表 3. 2. 3-5	試験片の化学成分(wt%)・・・・・・・・・・・・・・・・・・・・・・・・・3.2-58
表 3. 2. 3-6	測定された格子ひずみ $arepsilon_{lpha}$ から算出されたフーリエ係数
	(負荷応力:117 MPa) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
表 3.3.1-1	代表的な革新的原子炉システムと現行軽水炉の材料、運転条件等
表 3.3.1-2	代表的な革新的原子炉システムと現行軽水炉に想定される損傷・・・3.3-2
表 3.3.1-3	対象部位、形状、材料の分類・・・・・・・・・・・・・・・・・・・・・・3.3-2
表 3.3.1-4	本プロジェクトで作製した溶接模擬試験体・・・・・・・・・・・・・・・・・・3.3-3
表 3.3.1-5	本プロジェクトで作製したき裂付与模擬試験体・・・・・・・・・・3.3-3
表 3.3.1-6	本プロジェクトで作製したき裂付与模擬試験体・・・・・・・・・・3.3-4
表 3. 3. 1-7	残留応力の算出に用いる材料物性値・・・・・・・・・・・・・・・・・・・・・.3.3-7
表 3.3.1-8	切断調査を行った疲労き裂付与試験体・・・・・・・・・・・・・・・・・・・・・・3.3-8
表 3.3.1-9	各疲労き裂付与試験体におけるき裂高さのまとめ3.3-16
表 3.3.2-1	フェーズドアレイ法における計測条件
表 3.3.2-2	従来超音波法による各試験体の超音波入射条件・・・・・・・・.3.3-19
表 3.3.2-3	新超音波法による計測条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・.3.3-20
表 3.3.2-4	新超音波法による各試験体の計測条件・・・・・・・・・・・・・・・・・・3.3-21
表 3.3.2-5	母材のノイズレベルで正規化した溶接金属のノイズレベル比較・・・3.3-23
表 3.3.2-6	従来超音波法によるき裂寸法測定結果・・・・・・・・・・・・・・・・・・・・・・3.3-26
表 3.3.2-7	従来超音波法によるき裂寸法測定結果・・・・・・・・・・・・・・・・・・・・・・3.3-28
表 3.3.2-8	実測したき裂高さと比較した誤差の評価結果・・・・・・・・・・・3.3-29
表 3.3.3-1	残留応力計測を行った溶接模擬試験体・・・・・・・・・・・・・・・・・・・・・・3.3-30
表 3.3.3-2	新 X 線計測法の測定条件・・・・・・・・・・・・・・・・・・・・・・・・3.3-31
表 3.3.3-3	従来型 X 線計測法の測定条件・・・・・・・・・・・・・・・・・・・・・・・3.3-31
表 3.3.3-4	応力測定時の X 線プロファイルの平滑化条件(平滑化条件 1) ・・・ 3. 3-43

表 3.3.3-5	新 X 線法と従来法で同等の X 線プロファイルの平滑化条件	
	(平滑化条件2) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13

図一覧

全体計画図
単純な積層構造と絶縁層の必要性・・・・・・・・・・・・・・・・・・・・・・・・
- ### 00 K/1 III/2 = #248/11 + 2 2 / 12 絶縁層不要の 2 層 1 チャンネル構造 · · · · · · · · · · · · · · · · · · ·
16 層 8 チャンネル探触子の各チャンネル励振波形(2 5MHz) ・・・・3 1-2
2 @ 1 + y > x = x = x = y = y = y = y = y = y = y =
の比較(2.5MHz) ····································
 ・ デーを ・ 宇極冬層の 春層 探 ・ デー ・ 宇極冬層の 春層 探 ・ デー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
積層 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 層積層の新しい積層方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ミレッジャン 1-7 SiC パルサーの外観 ····································
励振電圧と出力変位 SiC パルサー (出力インピーダンス 50) ···3 1-8
(出力インピーダンス 50) $PTI-C6$ ····································
(出力インピーダンス5 Ω) PZT-C9·······3.1-9
くさび一体型4層4チャンネル探触子概略図・・・・・・・・・・・・・・・・・・・・・・・・
正式の目的では、1000000000000000000000000000000000000
正電素子へのはんだ付け位置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
着層した素子とくさび・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
加圧機を用いた接着・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
基盤を用いた積層探触子の配線様子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・.3.1-11
PZT くさびを用いた 300V 励振波形 ····································
4 層 4 チャンネル積層素子全チャンネル遅延励振波形
(PZT くさび、励振電圧 300V) · · · · · · · · · · · · · · · · · · ·
積層探触子における実効電圧と変位の関係・・・・・・・・・・・・・・・・・・
試験片寸法・・・・・・3.1-15
導入した閉口き裂への小負荷による開閉挙動3.1-16
荷重負荷装置外観・・・・・・
S50C∆K=12 MPa√m 0 kN······3.1-17
S50C∆K=12 MPa√m 0.6 kN······3.1-18
S50C∆K=12 MPa√m 0 kN ウェーブレット変換・・・・・・・・・・3.1-18
S50C∆K=12 MPa√m 0.6 kN ウェーブレット変換・・・・・・・・3.1-19

図 3.1.2-8	SUS304 $\triangle K=11$ MPa \sqrt{m} 0 kN······3.1-19
図 3.1.2-9	SUS304 $\Delta K=11$ MPa \sqrt{m} 0.8 kN····································
図 3.1.2-10	SUS304 $\Delta K=11$ MPa \sqrt{m} 1.2 kN······3.1-20
図 3.1.2-11	ΔK=11 MPa√m 0 kN ウェーブレット変換・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 3.1.2-12	ΔK=11 MPa√m 0.6 kN ウェーブレット変換・・・・・・・・・・・・3.1-21
図 3.1.2-13	SUS304 ΔK=11 MPa√m 1.2kNウェーブレット変換 ・・・・・・・3.1-21
図 3.1.2-14	SCM440∆K=9 MPa√m 0 kN······3.1-21
図 3.1.2-15	SCM440∆k=9 MPa√m 0.6 kN······3.1-22
図 3.1.2-16	SCM440 $\triangle K=9$ MPa \sqrt{m} 0.8 kN ······3.1-22
図 3.1.2-17	SCM440ΔK=9 MPa√m 0 kN ウェーブレット変換・・・・・・・・・3.1-22
図 3.1.2-18	SCM440ΔK=9 MPa√m 0.6 kN ウェーブレット変換・・・・・・・3.1-23
図 3.1.2-19	SCM440ΔK=9 MPa√m 0.8 kN ウェーブレット変換・・・・・・・・3.1-23
図 3.1.2-20	SUS304 $\Delta K=12$ MPa \sqrt{m} 0 kN······3.1-24
図 3.1.2-21	SUS304 $\Delta K=12$ MPa \sqrt{m} 0.4 kN····································
図 3.1.2-22	SUS304 $\Delta K=12$ MPa \sqrt{m} 0.8 kN ···································
図 3.1.2-23	SUS304 \triangle K=12 MPa \sqrt{m} 1.2 kN······3.1-25
図 3.1.2-24	SUS304 ΔK=12 MPa√m 0 kN ウェーブレット画像 ·······3.1-25
図 3.1.2-25	SUS304 ΔK=12 MPa√m 0.4 kN ウェーブレット画像 ······3.1-26
図 3.1.2-26	SUS304 ΔK=12 MPa√m 0.8 kN ウェーブレット画像 ······3.1-26
図 3.1.2-27	SUS304 Δk=12 MPa√M 1.2 kN ウェーブレット画像 ······3.1-26
図 3.1.2-28	開口量, 超音波変位とω/2の発生の有無(SUS304) ······3.1-27
図 3.1.2-29	開口量、超音波変位とω/2の発生の有無(SCM440) ······3.1-27
図 3.1.2-30	サブハーモニック発生機構模式図・・・・・・・・・・・・・・・・・・・・・・・3.1-28
図 3.1.2-31	平面き裂モデル(従来法全てのき裂モデル)・・・・・・・・・・・・3.1-29
図 3.1.2-32	SUS304 の実き裂破面 · · · · · · · · · · · · · · · · · · ·
図 3.1.2-33	球状 2 重接点き裂モデル・・・・・・・・・・・・・・・・・・・・・・・・・3.1-30
図 3.1.2-34	球状き裂モデルで平面き裂モデルを模擬した解析結果3.1-30
図 3.1.2-35	非対象球状2重接点き裂モデル(L=1 mm)・・・・・・・・・・・・・・・3.1-31
図 3.1.2-36	非対象球状 2 重接点き裂モデル(L=100μm)・・・・・・・・・・・・・・3.1−32
図 3.1.2-37	様々のき裂長さLが分布する実機き裂のモデル・・・・・・・・3.1-32
図 3.1.2-38	PSS-1 の SPACE による欠陥計測結果の一例 · · · · · · · · · · · · · · · · 3.1-33
図 3.2.1-1	結晶格子による X 線の回折現象の説明図 · · · · · · · · · · · · · · · · · 3.2-1
図 3.2.1-2	X線回折による回折環の発生原理の説明図 ························3.2-2
図 3.2.1-3	回折環画像からのピーク位置の変化($\Delta heta = heta - heta_{0}$)および
	半価幅の決定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.2-3
図 3.2.1-4	一般化 cosα 法の X 線光学系および測定原理で設定する座標系・・・3.2–5
図 3.2.1-5	本プロジェクトで開発した小型Ⅹ線回折装置の構成・・・・・・・3.2-9
図 3.2.1-6	本プロジェクトの開発機の外観写真・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

図 3.2.1-7	オーステナイト系ステンレス鋼(SUS316L)の溶接残留応力測定で
	得られた回折環(Mn-Kα 特性Χ線を照射し、311 回折線を測定、
	ポイント測定による) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・.3.2-10
図 3. 2. 1-8	「試料平面揺動機構」の説明図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 3. 2. 1-9	「試料平面揺動機構」の適用による回折環の変化
	(オーステナイト系ステンレス鋼(SUS316L)の溶接残留応力測定。
	Mn-Kα 特性 X 線を照射し、311 回折線を測定。) ・・・・・・・・・3.2-12
図 3. 2. 1-10	「試料平面揺動機構」の適用によるX線照射面積と測定された
	応力値の関係(オーステナイト系ステンレス鋼(SUS316L)の
	溶接残留応力測定。Mn-Kα特性X線を照射し、311回折線を測定。)
図 3. 2. 1-11	試料面に凹凸が存在する場合に対する揺動機構の概念図・・・・・・3.2-14
図 3. 2. 1-12	試料面に凹凸が存在する場合に対する揺動機構を搭載した改良機・3.2-15
図 3. 2. 1-13	試料面に凹凸が存在する場合に対する揺動機構を搭載した改良機
	による配管溶接試験体の残留応力測定結果および Cr-Kβ 線と
	cosα法を用いてポイント測定した結果との比較 ·······3.2-16
図 3. 2. 1-14	塑性ひずみが異なる材料から得られた回折環の比較
	(SUS316L、電解研磨処理後、熱処理実施材) ··········3.2-17
図 3. 2. 1-15	塑性ひずみが異なる材料から得られた半価幅の変化(ポイント
	測定の場合、SUS316L、電解研磨処理後、熱処理実施材) ・・・・・3.2-18
図 3. 2. 1-16	塑性ひずみを付与した試験片に対するマッピング測定箇所の説明図
図 3. 2. 1-17	マッピング測定による 16 点から得られた半価幅の平均値と付与し
	た塑性ひずみとの関係
	(SUS316L、電解研磨処理後、熱処理実施材) ···········3.2-20
図 3. 2. 2-1	cosα法の光学系の概要図 ····································
図 3. 2. 2-2	回折環像の例(実線は試料にひずみが無い場合。破線は試料にひ
	ずみがある場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
🗵 3. 2. 2-3	cosα 法の回折環評価 ······3.2-23
図 3. 2. 2-4	SK65 材の $arepsilon(lpha)$ の例(約 100 MPa の応力を負荷している。上図
	の点線が実測値で破線がフーリエ級数による近似。下図は測定値と
	近似値の差を示している。[参考文献(2)]のFig.5より転載。)・3.2-25
図 3. 2. 2-5	SK65 材に四点曲げ試験を行って負荷応力(横軸) と X 線で求めた
	応力(縦軸)を比較した図(X 線応力は cosα法とフーリエ解析法
	を比較している。[参考文献(2)] の Fig.6 より転載。)3.2-26
図 3. 2. 2-6	cosα 法では誤差の生じる場合の一例 ・・・・・・・・・・・・・・・・・・・・・・・・3.2-28
図 3. 2. 3-1	粗大な結晶粒がある場合の回折環モデル
	([参考文献(4)]の Fig. 2 より抜粋。) ・・・・・・・・・・・・・・・・・・・・・・・・3. 2-29
図 3. 2. 3-2	図 3.2.3-1 の回折環モデルから計算した ε(α)

	([参考文献(4)]のFig.3より抜粋。) ·················3.2-30
図 3.2.3-3	平面揺動の概念図([参考文献(4)]のFig.17より抜粋。) ・・・・・・3.2-31
図 3.2.3-4	X 線照射点のマッピング([参考文献(4)]の Fig. 6 を転載。) ·····3. 2-32
図 3.2.3-5	実証に使用した JIS-S40C 材の組織写真
	([参考文献(4)]の Fig.5 を転載。) ・・・・・・・・・・・・・・・・・・・・・3.2−32
図 3.2.3-6	試料から測定された回折環の一例
	(平面揺動無し、[参考文献(4)]のFig.7を転載。) ・・・・・・・・・3.2-33
図 3.2.3-7	点1で測定された $arepsilon' (lpha)$ (約 160 MPa の応力を負荷した状態で
	測定。破線は式(3.2.2-5)のモデル。
	[参考文献(4)]のFig.9より抜粋。) ・・・・・・・・・・・・・・・・・・・・・・3.2-34
図 3.2.3-8	16 点で測定された $arepsilon$ ' $(lpha)$ の平均(約 160 MPa の応力を負荷した
	状態で測定。破線は式(3.2.2-5)のモデル。
	[参考文献(4)]の Fig. 10 より抜粋。) ・・・・・・・・・・・・・・・・・・・・・・・・3. 2-34
図 3.2.3-9	図 3.2.3-4 の各測定点で四点曲げ負荷試験を行いながら X 線で応力
	を求めた結果([参考文献(4)]の Fig. 14 より転載) ・・・・・・・・・3. 2-35
図 3. 2. 3-10	図 3.2.3-4 の各測定点で四点曲げ負荷試験を行いながら X 線で応力
	を求めた結果(X 線による応力は各点で測定した $arepsilon(lpha)$ を平均し、
	式(3.2.3-5)の近似係数から計算した。
	[参考文献(4)]の Fig. 15 より転載。) ・・・・・・・・・・・・・・・・・・・・・3. 2-35
図 3.2.3-11	式(3.2.3-4)による ε(α)のパワースペクトラム E(k)
	(横軸は k で縦軸が E (k)。単独の測定点での値 (n =1)と、
	4 点、16 点平均。[参考文献(4)]の Fig. 12 を転載。) ・・・・・・・・3. 2-36
図 3.2.3-12	X 線入射角揺動の概念図([参考文献(4)]の Fig. 17 より抜粋。) ····3. 2-37
図 3.2.3-13	X 線入射角揺動無しで測定された $arepsilon(lpha)$ (約 160 MPa の応力を負荷
	した状態で測定。破線は式(3.2.2-5)のモデル。
	[参考文献(6)]のFig.6を転載。) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.2-39
図 3.2.3-14	\pm 10°のX線入射角揺動で測定された $arepsilon(lpha)$ (約160 MPaの応力
	を負荷した状態で測定。破線は式(3.2.2-5)のモデル。
	[参考文献(6)]のFig.8を転載。) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.2-39
図 3.2.3-15	式(3.2.3-4) による ε (α)のパワースペクトラム E(k)
	(横軸は k で縦軸が E (k)。単独の測定点での値 (n = 1)と、4 点、
	16 点平均。[参考文献(6)]の Fig.9 を転載。) ・・・・・・・・・・・・・・・・・・・・・・・3.2-40
図 3.2.3-16	四点曲げ負荷試験を行いながら X 線で応力を求めた結果
	(X線による応力は±10°のX線入射角揺動をかけ、式(3.2.3-5)を
	利用して計算した。[参考文献(6)]のFig. 11より転載。)3. 2-40
図 3.2.3-17	一部が掛けた回折環の模擬データ
	([参考文献(6)]のFig.1を転載。) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.2-42
図 3.2.3-18	一部が欠けた回折環の $arepsilon(lpha)$ と本プロジェクトの方式による
	近似(破線)([参考文献(6)]のFig.3を転載。)3.2-43

図 3.2.3-19	X線回折測定の基本図([参考文献(10)]のFig.1を転載。) ······3.2-45
図 3.2.3-20	極点図の定義
	(角度はラジアン。[参考文献(10)]のFig.2より抜粋。) ・・・・・・3.2-45
図 3.2.3-21	$sin^2\psi$ 法で(ϕ = 0, ψ = 45°) に相当する測定を行った場合の
	diffraction vector の極点図
	([参考文献(10)]のFig.2より抜粋。) ・・・・・・・・・・・・・・・・・3.2-46
図 3.2.3-22	cosα法および本プロジェクトの方式での一回のX線入射による
	diffraction vector の極点図
	([参考文献(10)]のFig.4より抜粋。) ・・・・・・・・・・・・・・・・・3.2-47
図 3.2.3-23	2D 法での一回の X 線入射による diffraction vector の極点図
	([参考文献(10)]のFig.4より抜粋。) ・・・・・・・・・・・・・・・・・3.2-47
図 3.2.3-24	sin²ψ 法による三軸応力測定の diffraction vector の極点図の例
	([参考文献(10)]のFig.5より抜粋。) ・・・・・・・・・・・・・・・・3.2-48
図 3.2.3-25	2D 法による三軸応力測定の diffraction vector の極点図の例
	([参考文献(10)]のFig.5より抜粋。) ・・・・・・・・・・・・・・・・・3.2-49
図 3.2.3-26	$\cos lpha$ 法による三軸応力測定の diffraction vector の極点図の例
	(Type B)([参考文献(10)]のFig.6より抜粋。) ・・・・・・・・・3.2-51
図 3.2.3-27	$\cos lpha$ 法による三軸応力測定の diffraction vector の極点図の例
	(Type C)([参考文献(10)]の Fig. 6 より抜粋。) ・・・・・・・・・3. 2-51
図 3.2.3-28	$\cos lpha$ 法による三軸応力測定の diffraction vector の極点図の例
	(Type D)([参考文献(10)]のFig.6より抜粋。) ・・・・・・・・3.2-52
図 3.2.3-29	Cr-Kβ による回折環の測定例 (a)Type 304の粉末 (b)Type 316
	の粉末 (c)Type 304SS の応力試験片 (d)Type 316L の応力試験片
	([参考文献(15)]のFig.5を転載。) ・・・・・・・・・・・・・・・・・・・・・3.2-54
図 3.2.3-30	Cr-K eta による Type 304 の $arepsilon(lpha)$ の例(実線が応力試験片を、破線
	が粉末を測定したもの。[参考文献(6)]の Fig. 4 より抜粋。) 3. 2-55
図 3.2.3-31	Mn-Kαによる回折環の測定例(a)Type 304の粉末(b)Type 316
	の粉末(c)Type 304SS の応力試験片(d)Type 316L の応力試験片
	([参考文献(15)]のFig.3を転載。) ・・・・・・・・・・・・・・・・・・・・・3.2-55
図 3.2.3-32	Mn-K $lpha$ による Type 304 の $arepsilon(lpha)$ の例(実線が応力試験片を、破線
	が粉末を測定したもの。[参考文献(6)]の Fig. 4 より抜粋。) ・・・・・ 3. 2-56
図 3.2.3-33	一般構造用炭素鋼鋼材(S45C)および炭素工具鋼鋼材(SK65)の
	金属組織写真
図 3.2.3-34	ー般構造用炭素鋼(S450)の受入材試験片から得られた回折環
	(負荷応力:117 MPa) ····································
図 3.2.3-35	一般構造用炭素鋼 (S45C) の受入材試験片から得られた回折環半径
	方向に対する回折プロフィル(負荷応力:117 MPa) ······3.2-59
図 3.2.3-36	$\cos lpha$ 法およびフーリエ解析法から得られた $\cos lpha$ 線図および
	cos2α線図······3.2-60

図 3.2.3-37	cosα 法およびフーリエ解析法から得られた sinα 線図および
	sin2α 線図······3.2-61
図 3. 2. 3-38	フーリエ級数近似の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 3.2.3-39	四点曲げ試験によるX線応力測定精度の検証結果・・・・・・・・3.2-64
छा २ २ 1–1	H26 年度に作制した田筒試験は
区 0.0.1 1 図 2 2 1_2	H27 年度に作表した平坂試験体 3.3 4
전 0.0.1 Z	127 午夜に作表した平板転駅体 0.0 年 127 午夜に作表した平板転駅体のき裂付与横擬試験休
⊠ 3 3 1–4	
図331-5	127 平及に下裂した近代のと教育学展歴政府
	模式図
図331-6	放電加工スリット付与部の概略図とスリット付与後の試験片の
⊠ 331–7	700-9-2 0.000
⊠ 3 3 1–8	計時休番号 1809 と 2685 のき裂の切断方法の例
⊠ 3 3 1–0	試験体留 9 1000 ビ 2000 のと 2000 のと 2000 の 2 2000 0 2
図 3 3 1-10	試験体 18010 のき裂部の断面マクロ観察結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3 3 1–11	試験体 2685 のき裂部の断面マクロ組密結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3 3 1–12	試験体 2000 のと裂部の断面マクロ観察結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3 3 1–13	試験体 (\$15 のき裂部の断面マクロ観察結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3 3 2–1	計測方法お上びデータ取得方法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3 3 2-2	従来超音波法(フェーズドアレイ法)の計測状況・・・・・・・・・・・・3 3-18
⊠ 3.3.2–3	新超音波法の計測方法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3 3 2-4	新超音波法の計測状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
☑ 3. 3. 2–5	※接部のノイズレベルの測定方法と測定例・・・・・・・・・・・・・・・3.3-22
☑ 3. 3. 2-6	測定位置の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
☑ 3. 3. 2-7	試験体番号 1810 に対する測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
⊠ 3. 3. 2−8	試験体番号 PSS-1 に対する従来型の超音波法による測定結果・・・・・3.3-24
⊠ 3.3.2−9	試験体番号 PSS-1 に対する新超音波法による測定結果・・・・・・3.3-25
図 3.3.3-1	溶接模擬試験体の残留応力計測位置の例(平板)・・・・・・・・・3.3-31
図 3.3.3-2	SUS316L 同材の平板溶接模擬試験体(電解研磨あり)の比較 ・・・・・3.3-33
図 3.3.3-3	SUS316L 同材の平板溶接模擬試験体(電解研磨なし)の比較 ・・・・・3.3-33
図 3.3.3-4	Alloy600 同材の平板溶接模擬試験体(電解研磨あり)の比較 ・・・・・ 3.3-33
図 3.3.3-5	SUS316L-SS400 異材の平板溶接模擬試験体
	(電解研磨あり)の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3-34
図 3.3.3-6	PWHT ありの STPT410 同材の配管溶接模擬試験体
	(電解研磨あり)の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3-34
図 3.3.3-7	PWHT なしの STPT410 同材の配管溶接模擬試験体
	(電解研磨あり)の比較

🗵 3. 3. 3-8	直交方向応力測定時のデバイ環の一例・・・・・・・・・・・・・・・・・・3.3-35
図 3.3.3-9	STPT410-SUS316L 異材の配管溶接模擬試験体の比較 ・・・・・・・・3.3-35
図 3.3.3-10	応力計測したバタリング付異材継手模擬溶接試験体・・・・・・・・3.3-36
図 3.3.3-11	Alloy82 計測時のデバイ環の一例 ·······················3. 3-36
図 3.3.3-12	応力計測結果・・・・・・3.3-36
図 3.3.3-13	異材継手配管模擬溶接試験体の応力計測位置及び揺動条件3.3−37
図 3.3.3-14	残留応力計測結果(Cr 管球-ポイント計測との比較) ・・・・・・・3.3-38
図 3.3.3-15	応力弛緩後の残留応力計測結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 3.3.3-16	残留応力計測結果(応力弛緩法及び従来法との比較)・・・・・・・・3.3-39
図 3.3.3-17	塑性ひずみ付与模擬試験体のデータ取得位置・・・・・・・・・・・・・・・・3.3-40
図 3.3.3-18	塑性ひずみ付与試験体の半価幅の比較・・・・・・・・・・・・・・・・・・・・・・3.3-41
図 3.3.3-19	電解研磨後のステンレス鋼の塑性ひずみ付与試験体の半価幅
	の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3-42
図 3.3.3-20	電解研磨後の Ni 基合金塑性ひずみ付与試験体の半価幅の比較3.3-42
図 3.3.3-21	SUS316L(熱処理あり、電解研磨なし、塑性ひずみ 0%)
	の X 線プロファイル · · · · · · · · · · · · · · · · · · ·
図 3.3.3-22	SUS316Lの平滑化条件による半価幅の比較 ・・・・・・・・・・・・・3.3-44
図 3.3.3-23	SUS316L(熱処理あり-電解研磨あり)の平滑化条件による
	デバイ環の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図 3.3.3-24	SUS316L の半価幅の再解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3-45
図 3.3.3-25	マッピング計測の計測点(16 点) ・・・・・・・・・・・・・・・・・・・・・・・3.3-46
図 3.3.3-26	ポイント計測による Cr 管球と Mn 管球の計測結果の比較 · · · · · · · · 3.3-46
図 3.3.3-27	塑性ひずみ量とデバイ環形状の関係(熱処理あり−電解研磨あり)・3.3-47
図 3.3.3-28	半価幅の中心角α方向の分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3.3-47
図 3.3.3-29	半価幅の 16 点の平均値(エラーバーは最大値と最小値) 3. 3-47
図 3.3.3-30	塑性ひずみと X 線計測から得られたパラメータの関係3.3-48

略語一覧

FEM:Finite Element Method (有限要素解析法)
FFT:Fast Fourier Transform (高速フーリエ変換)
IP:Imaging Plate (イメージングプレート)
PWHT:Post Weld Heat Treatment (溶接後熱処理)
PZT:lead zirconate titanate (チタン酸ジルコン酸鉛)
RMS:Root Mean Square (二乗平均平方根)
RT:Radiographic Testing (放射線透過試験)
SC:Scintillation Counter (シンチレーションカウンター)
SCC:Stress Corrosion Crack (応力腐食割れ)
SiC:Silicon Carbide (シリコンカーバイド)

SPACE : Subharmonic Phased Array for Crack Evaluation (閉口き裂の映像法)

- SS400:一般構造用圧延鋼材
- SUS304:オーステナイト系ステンレス鋼の一種
- SUS316L:オーステナイト系ステンレス鋼の一種
- WES:Welding Engineering Society(日本溶接協会指針)

概略

本研究は、現行原子炉及び新型原子炉構造部材の、経年損傷時の SCC (Stress Corrosion Crack: 応力腐食割れ)を含むき裂計測において新超音波法により精度を向上し、また実機適用可能な新X線法を開発することで、SCC の進展防止のための圧縮応力負荷時の残留応力のモニタリング、さらに地震後の再稼働時、塑性変形評価手法を確立すること、さらにこれら開発した新しい計測法の実機適用性を検証することを目的とした。

新超音波法の開発については、 まず大変位超音波送信技術として、 平成 24 年度から開発してき た積層探触子とマルチチャンネルパルサーを組み合わせる計測システムを SPACE (Subharmonic Phased Array for Crack Evaluation: 閉口き裂の映像法) に組み合わせる開発を進め、平成 25 年度に 16 素子積層 8 チャンネルパルサーで当初の大変位化を達成したが、実機適用には積層 探触子の構造が複雑で探触子の歩留まりが悪く、さらに8台のパルサーが必要だった。そこで平 成 26 年度に平成 25 年度の基礎検討を受けて、高能率の PZT-C6 (lead Zirconate titanate:チ タン酸ジルコン酸鉛) 圧電素子とこの素子を有効に励振できる大電流対応型の SiC (Silicon Carbide:シリコンカーバイド)トランジスタを用いた超音波パルサーを新たに開発し、4層積層 探触子と4 チャンネル SiC パルサーを組み合わせる簡易で実用的な計測システムを提案・試作し た。さらに平成27年度は4層積層探触子の作製方法を改良・確立し、耐圧構造を付加することで 大変位超音波送信を実現した。平成25年度まで圧電素子としてPZT-M6を用い、16層8チャンネ ルの積層素子により最大 500V 励振により鋼中 25 mm 伝搬後のき裂部変位は最大 30 nm 程度(Peak to Peak)だった。本プロジェクトの成果として、PZT-C材を4層積層した積層探触子を4台のSiC パルサーで駆動する新しい計測システムにより、まず従来の16層の積層から4層積層に構造を単 純化し、実用に向けて積層探触子製造時の歩留まり改善と低コスト化を同時に達成した。また送 信超音波の大変位化については、特に平成27年度にPZT-C材の4層積層探触子の製造工程を見直 し、耐圧性を確保した信頼性の高い製造技術を検討・確立したことにより、現有の SiC パルサー の上限電圧の 1000V のまで利用できることを確認し、前述の 25 mm 伝搬後の鋼き裂において最大 約 200 nm の大変位超音波送信を可能とした。これらを既存の SPACE に組み入れることで実機対応 可能な新超音波法計測位システムを完成することができた。次に平成26年度から各種材料に破壊 力学の知見を利用して、まず試験片に閉口疲労き裂を導入し、き裂導入後弾性範囲の負荷荷重制 御によりき裂を僅かに開閉しながら、さらに入射超音波変位も変化させ、き裂でのサブハーモニ ック波の発生挙動を観察した。その結果、本プロジェクトで開発した大変位超音波送信技術と組 み合わせた SPACE (新超音波法)を用いれば、入射変位が小さいときにサブハーモニック波が発生 しなかったき裂でも、入射超音波変位を大きくすることでサブハーモニック波を発生できること を確認した。このことは本研究で進めた SPACE システムの大変位化が、サブハーモニック波計測 の探傷適用において、汎用性を広げることに寄与することを実証するものであり、さらにこれら のき裂での実験データはサブハーモニック波の発生機構を考察する場合の基礎データとしても有 用である。またき裂におけるサブハーモニック波発生機構を定量的に考察するための解析モデル として、破面観察からき裂の凹凸がμm 程度あることに着目し、き裂の凹凸を考慮できるき裂モ デルを提案し、市販の有限要素解析コードを用いて解析した結果、き裂部に粘性因子を考慮しな いモデルとして始めて、サブハーモニック波を出現できることを確認した。解析モデルのき裂形 状パラメータとして、接触距離(L)を平成 26 年度には1 mm、平成 27 年度に 100 μm に変えて解 析を行った結果、いずれについても広範な条件でサブハーモニック波の発生が確認できた。この ことから、本き裂凹凸モデルはサブハーモニック波のき裂における発生機構解明のための基盤モ デルとなり得ると考えられ、今後接触距離を実機き裂で計測し、実測した接触距離の範囲で接触 距離をランダムに変化させながら、これらの透過波形を積算することでき裂部でのサブハーモニ ック波発生が定量的に模擬できると考えている。さらに、発電技検で作製した実機き裂模擬試験 体についても新超音波法を用いて計測した結果、既存の超音波探傷法で SN 比が悪い、き裂端部エ コーの識別が困難なき裂でもサブハーモニック画像でき裂端部が確認できる事例を確認し、新超 音波法の有効性を実証できた。将来的には実用炉にも十分適用可能な技術であると考えており、 研究推進委員会でも同様の評価を頂いた。

新 X 線法の開発については、実機適用可能な残留応力及び塑性ひずみ評価を実現するため、測 定のために必要な性能として、①小型軽量性、②測定時間の高速性、③測定精度の向上、の 3 点 を目標として進めた。

まず、①の小型軽量性に関しては、新しいX線計測技術である二次元X線検出器をX線応力測 定法として世界で初めて採用して実現した。具体的には、1980年代にフジフィルム社が医療用と して開発したイメージングプレート(Imaging Plate:IP)をX線応力測定用に世界に先駆けて導 入した。その基礎的知見のベースには金沢大学の佐々木らによる1990年代以降の基礎研究の蓄積 を活用して進めた。この結果、従来技術では不可欠となる大型で精密な回転機構からなるゴニオ メータ部が不要にすることができた。これにより、装置全体が非常にシンプルにでき、しかも、 小型で軽量な装置が実現した。従来技術と比較すると、本プロジェクトの開発機は装置占有スペ ースにおいて約1/20、装置総重量において約1/15という超小型軽量化が実現できた。

次に、②の測定時間の高速性に関しては、①の二次元 X 線検出器の導入による回折環画像デー タの一括計測かつ高速計測が可能となったことにより、従来技術(測定時間:10分~20分以上) に比べて約 10 倍高速な測定時間 1分~2分程度を実現した(なお、測定時間の幅は測定試料の結 晶状態に依存して変わる)。なお、本プロジェクトの方式で測定される回折環画像データの有効活 用のため、従来技術で用いられてきた、いわゆる、「sin² ¢法」ではなく、新しい応力解析理論で ある「cos α 法」を採用して応力解析を行った。この cos α 法による X 線応力測定の装置化は世界 初の実現である.なお, cos α 法は平面応力測定用であるが、本プロジェクトでは金沢大の佐々木 が開発した三軸応力状態にも適用可能な応力解析理論「一般化 cos α 法」も適用可能にした。さら に、本プロジェクトでは角部や溝部の測定などのように回折ビームの一部分が遮断されることで、 回折環の一部が欠ける場合にも有効に X 線応力解析可能な新解析理論「フーリエ解析法」も新開 発した。このような二次元 X 線計測及び新データ解析理論により従来技術と比べて大幅な測定時 間の短縮と適用範囲の拡大が実現した。

さらに③の測定精度の向上に関しては、まず、上記でも述べた「一般化 cos a 法」による三軸応 力成分の影響を正確に考慮できるようにした。また、「フーリエ解析法」の新開発により、回折環 が不完全となる場合、たとえば、前述の角部や溝部などの他に結晶粒が粗大な場合や X 線照射面 積が小さい場合に問題となる斑点状(スポッティ状)の回折環に対しても精度よく応力測定がで きるようになった。また、フーリエ解析法でも対応が難しくなるような極端な斑点状の回折環が 得られる場合に対しては、機械的に回折環を滑らかにすることが可能な新機構である「試料平面 揺動法」を開発した。こうして、測定精度を確保するとともに、従来技術より微小部の測定から

xii

広い部分の測定までを測定精度を維持したまま実現可能とした。なお、前者の微小部はコリメー ターの調整で対応し、後者の広い部分は試料平面揺動法で対応可能である。一方、応力測定精度 に関しては、従来技術における±30 MPaから本プロジェクトでは±1.2~5.8 MPaとなり、約5倍 以上の繰り返し精度を達成できることを実証した。

塑性ひずみ評価に関しては、回折環全体から1度のX線測定で500個の半価幅データを使用で きる利点を活用し、さらに前記の試料平面揺動法(マッピング測定)も適用することで安定した 評価を実現できることを証明できた。また、現場適用においては、機器製作時の表面加工層の影響や材質の影響が避けられない事が課題であったが、電解研磨で測定表面の加工層を除去するこ とと、塑性変形を受けていない箇所と塑性ひずみが懸念される箇所との相対的な評価を行うこと 等により現場への適用可能性が確認された。 1.はじめに

1.1研究の狙い

本研究では、新型炉と現行炉共通の課題として経年損傷した原子力発電機器の残存強度を非破 壊評価する要素技術を開発するため、従来の技術では識別の困難な開口幅の小さい疲労き裂の端 部について、大振幅超音波を用いた新超音波法を開発して識別可能にするとともに、全回折環を 用いた小型の新 X 線計測技術を開発して原子力発電機器に適用可能な新超音波法と新 X 線計測技 術を確立することを目的とする。

1.2 背景

東日本大震災で、原子力発電機器に一旦重大事故が生じた場合の影響が、改めて認識された ため、従来行われてきた機器の保守管理技術の信頼性向上に向けた見直しが急務の課題である。 特に経年損傷を正確に計測し、部材の強度を評価・モニタリングする手法の精度が原子力発電機 器では特に求められる。破壊力学では、構造部材の強度は、応力、き裂の2次元寸法、材料強度 の3因子で評価できる。このうち、き裂の寸法評価は様々な非破壊検査法が実用されているが、 特に原子力発電機器では、破壊力学に従って2次元き裂寸法を唯一計測できる超音波法を用い、 き裂端部からの回折波による定量サイジング手法が実用されている。しかし、原子力機器で多用 される各種高 Ni 鋼に発生するき裂では、き裂の分岐や屈曲さらに端部の閉口により、き裂端部 が正確に把握しにくい事例も報告されてきた。特に2003年に女川原発で、溶接金属内に進展し たき裂端部が検出できない事例が顕在化して以降、き裂端部の識別性やサイジング精度について は個別に検討され、一部で対応も進んだもののなお計測の信頼性向上が求められている。

一方応力ついて、構造部材で必ず使われる溶接時の大きな入熱に伴って、必ず導入される残留 応力は、日本溶接協会指針(WES)からも、降伏応力レベルの極めて大きな残留応力が実機に生 じる可能性がある。しかし、実機に使える残留計測手法は現在皆無であり、実機の運用を規定す るWESでは、止むを得ず残留応力除去熱処理を行った場合は残留応力をゼロ、行わなかった場合 は例えば降伏応力の1/3の応力が残るとして設計する等の便法が採用されるが、定量的な根拠は 無い。

さらに地震を含む事故で突発的負荷により、部材に塑性変形が生じると著しく材料強度が低下 する。しかし残留応力の計測同様、実機部材に適用できる塑性変形の計測手法は無く、塑性変形 発生の有無を、直接関係の無い硬さ試験で評価しているのが現状である。

以上、原子力発電機器について、健全性を評価するため、以下の計測技術が欠落している。 ①2次元き裂サイジングで中核となる超音波探傷法において、SCCを含むき裂のサイジングに不可

欠な端部エコーの識別が現行の探傷技術で困難なケースで、き裂端部波の識別性を改善し、き 裂計測の精度と信頼性を確保する。

②溶接部で発生する残留応力について、実機において残留応力を計測できる計測法を確立する。③地震後の再稼働に不可欠の、実機での塑性変形を評価できる計測法を確立する。

1.3 研究構想

本研究では、1.2で開発が切望される計測技術①、②、③について、実機適用が可能な手法を 開発することを目標とする。①について、既に東北大三原等が開発した SPACE (Subharmonic Phased Array for Crack Evaluation)システム[参考文献(1)]で、き裂端部でサブハーモニック 波が発生するき裂では、サブハーモニック波画像の映像化により、入射周波数の超音波ノイズを 排除できることから、SN 比の高い端部エコー法の識別に有効であることを確認できていたの で、実機き裂でも広範にサブハーモニック波を発生するためのシステムとして、大変位超音波送 信技術と SPACE の組み合わせ(新超音波法)ること、さらに大変位超音波送信の中核技術とし て、積層探触子をマルチパルサーで遅延制御励振することを着想した。これら、SPACE と積層探 触子の遅延励振制御技術は、三原等のオリジナル技術[参考文献(2)]である。

次に②③については、残留応力、塑性変形について研究室的に最も実績のある X 線回折法に着 目し、金沢大佐々木等が実用化を進めてきた IP(Imaging Plate)法による cos α 解析を適用する ことを着想した。装置・電源・制御部の総重量 10kg 以下(従来法の 1/50 以下)、装置の寸法: 600 mm 四方(従来は 2000×1500×1000 mm 程度)程度の極めてハンディな装置を、特に原子力 機器への適用を想定し、オーステナイト系ステンレス鋼計測用に新たに開発し、実機計測する。 既存のフェライト鋼計測用の Cr 管球の計測システムでは、オーステナイト系ステンレス鋼の計 測には不向きなため、本研究では新たにオーステナイト系ステンレス鋼計測用に Mn 管球の計測 詩システムを開発し、実機構造物の計測法(新 X 線法)として確立する。

以上ここで開発する新超音波法、新X線法は、原子力発電機器実機対応を想定しているが、い ずれも大学の研究室での開発であり適用性の実証を別途行う必要がある。そこで原発実機の保 守・管理に実績を持つ発電技検が開発の初期段階から参加し、また最終の有効性確認において も、実機に近い大型模擬試験体を用いて従来法と比較した検証を行うことで、実機適用性につい て正しい評価を行うものとした。

参考文献

- Y. Ohara, T. Mihara, R. Sasaki, T. Ogata, S. Yamamoto, Y. Kishimoto, K. Yamanaka, Imaging of Closed Cracks using Nonlinear Response of Elastic Wave at Subharmonic Frequency, Applied Physics Letters, 90, pp. 011902-1-3, (2007)
- (2) 三原毅「超音波発受信器および超音波計測装置」特許出願 No. 2010-233738、特許公開: 2012-88113

2. 業務計画

2.1 全体計画

本業務の全体計画図を図 2.1-1 に示す。

ᅲᆃᄜ᠉ᆂᇢ				
研究開発項目	平成24年度	平成25年度	平成26年度	平成2/年度
(1)新超音波法の開発	積層要素技術 ・パルサーの改良	プロトタイプ機作製 (富山大学)	開発機の実機適用性	の検証(富山大→東北大)
	(富山大字)		実機発電機器 (富山大学(東	適用システムの作 北大)、発電技検)
	小型化の要素	原理検証機の開発	大型模擬材での検証	総合評価
(2)新X線法の開発	技術確立(金沢大学)	(金沢大学)	(金沢大学)	(金沢大学)
(3)共通試験体の作製	実機模携	試験体の作製 実機	巣擬大型試験体の作製(発	電技検) ━━━━━━━━━
			試験体	切断調査(発電技検)
開発機の有効性検証	プロトタイプ機 ◀━━━━	の適用(発電技検, 富山	大, 金沢大)	
従来法での限界抽出	-	(線従来法による残留)	「力測定(発電技検)	
		•	実機適用機の適用検証 (発	電技検,東北大,金沢大)
	←	超音波従来法による測	定(発電技検)	
(4)研究推進委員会		研究計画の確認と ✦ ▶	助言、研究成果の評価・∷ ✦✦	ロメント(評価委員会) ◆ ◆ ◆◆

図 2.1-1 全体計画図

平成24年度は、新超音波法、新X線法の開発については、研究に不可欠な要素技術の検討を、 発電技検では平板試験体の作製、従来法を用いた計測法の準備等を行った。平成25年度は、新超 音波法、新X線法の開発について、実用を想定したプロトタイプ機の作製を試み、発電技検では 大型試験体の作製を開始すると共に、開発したプロトタイプ機の計測適用を行った。平成26年度 は、新超音波法、新X線法共、実機適用を想定した試作機の開発を行い、発電技検では富山大、 金沢大と共同で開発した計測システムについて、従来計測法と比較して有意性の検証を試みると 共に、大型溶接試験体の試作にも着手した。平成27年度は研究代表者である三原の所属が、富山 大から東北大に変更になった。最終年度であり、新超音波法、新X線法共、開発した実機適用シ ステムの一部改良を行うと共に、基礎データの取得、さらに発電技検、東北大、金沢大と共同で 作製した実機模擬試験体を用い、開発した計測システムの有効性検証を行った。

3. 業務の実施内容及び成果

3.1 新超音波法の開発

3.1.1 大振幅超音波計測用積層探触子と超音波パルサーの開発(H24~H27)

(1)積層探触子とマルチパルサーを組み合わせた大変位超音波送信システム(H24)

我々はサブハーモニック超音波計測「参考文献(1)~(5) 〕を実用するための計測システムとして、 市販のフェーズドアレイ装置を改造した Subharmonic Phased Array Crack Evaluation (SPACE) システム「参考文献(6)]を開発した。サブハーモニック波は閉口き裂に大変位超音波を入射した 際に、き裂部の僅かの叩き合いにより入射波と異なる周波数の超音波が発生する現象と考えられ、 既存の SPACE で、一部の閉口き裂において線形超音波計測に比べ、き裂端部エコーの視認性向上 に有効だった。しかし一方、SPACE が有効でない多くの実機き裂が存在することを確認しており、 サブハーモニック波をき裂端部エコー評価に広範に利用する上でより広範なき裂でもサブハーモ ニック波を発生させるためには、より大変位の超音波を入射すれば広範なき裂で叩き合いが発生 することが期待できる。既存の SPACE では大電圧バースト波で市販の探触子が破損するため、斜 角探触子を試作すると共に、最大電圧 500V 程度の送信で、鋼中を 25 mm 伝搬後のき裂部におけ る変位(Peak to Peak)で、10~20 nm 程度の入射超音波が利用されてきた。我々は大変位超音波 送信のための技術として、アクチュエータ等で大変位を得るために多用される積層探触子に着目 した。まず KHz~MHz 域の周波数帯の積層探触子を試作し、超音波パルサーで励振したが、積層 構造により電気インピーダンスが低下し、印加電圧が低下するため、積層枚数程には大変位超音 波が送信できないことが分かった。そこで積層探触子をそれぞれ独立したパルサーで励振すると 共に、上部の素子で励振された超音波が下部素子に伝搬したタイミングで下部の素子を励振し、 送信超音波の位相を揃えて重ねる遅延制御励振を組み合わせる超音波送信システム[参考文献(7)、 (8)]を着想した。

(2)2層1チャンネル積層探触子の構造と試作(H24)

沢山の圧電素子を積層することを考えた場合、図 3.1.1-1の様に励振時の短絡を防止するため には、積層素子の間に複数の絶縁層が不可欠になる。

図 3.1.1-2 絶縁層不要の 2 層 1 チャンネル構造

絶縁層は探触子内の超音波の伝搬を妨害し、反射減衰により振幅が減り、また反射ノイズも発 生することから、大変位超音波送信のための探触子構造としては問題がある。そこでここでは図 3.1.1-2に示すように、2層の圧電素子を分極の反対方向に張り合わせ、1チャンネルを基本ユ ニットとすること[参考文献(7)]を着想した。これにより基本ユニットの上下両面は GND なの で、何層でも絶縁層無く積層することが可能となる。まず圧電素子が2枚1組であるため共振周 波数は、用いる圧電素子の板厚共振周波数の2分の1になる。

(3)16 層積層 8 チャンネル探触子の試作と性能評価(H25~H26)

積層探触子とマルチパルサーを組み合わせた超音波送信システムを SPACE に組み込むため、各 素子の接着工程として、表面粗さの調整、ハンダによる結線方法の工夫、電極の薄膜化プロセス 等を試作積層素子の性能を評価しながら改良し、製造のノウハウを蓄積した。[参考文献(9)] また、多数の素子積層を補助する治具の開発や、ハンダによる結線方法の工夫を行った。さら に、大きな電圧まで印加できる様に電極間を離す工夫を加え、さらに樹脂でパッケージして短絡 を防止する構造を取った。これらの製造工程の改良を継続的に行いながら、KHz 域の積層探触子 作製から、SPACE 計測に使う 5MHz の積層探触子作製を目標に製造技術を蓄積した。

図 3.1.1-3 16 層 8 チャンネル探触子の各チャンネル励振波形(2.5MHz)

図 3.1.1-4 2層1チャンネル素子(左)と8チャンネル励振(右)の比較(2.5MHz)

その結果、最終的に平成24年度に試作した2.5MHz 積層素子の各素子のみを励振した際の積層 探触子表面の変位波形を図3.1.1-3に、これらを全チャンネルで遅延励振して得られた結果を図 3.1.1-4に示す。8チャンネルの励振で、図3.1.1-4より1チャンネルの励振時の送信変位と比 べて4倍程度の大変位を得られた。さらに平成25年度は、製造工程の改良を行い、得られた 5MHzの16層8チャンネル積層素子の送信波形を各チャンネル毎の送信波形を図3.1.1-5に、 全チャンネルで遅延励振して得られた結果を図3.1.1-6に示す。

図 3.1.1-5 接着・電極各層の積層探触子の各チャンネルの波形(5MHz)

図 3.1.1-6 積層探触子を全チャンネル遅延励振時の変位波形(5MHz)

10 波バースト波、400V での励振結果である。1 チャンネルでおよそ 50 nm の変位であるのに対し、8 チャンネルで 330 nm とほぼ 7 倍弱の大振幅変位が得られた。周波数 5MHz は現行の SPACE

での設計周波数であり、この大変位超音波送信システムは SPACE に組み込んで計測することが可 能である。平成 24 年度に試作した 2.5MHz の積層素子と性能を比較すると、平成 25 年度の 5MHz 探触子では、10MHz の薄い板厚の圧電素子を 16 枚積層する構造を取っており、2.5MHz 探触子よ り複雑で加工も困難でありながら、図 3.1.1-5 と図 3.1.1-3 を比較すると各素子の個別の性能に ついてもより均一な素子が作製できているものと判断できる。その結果、1 チャンネルの励振と 比べ8 チャンネルの遅延励振で、2.5MHz 探触子では4 倍程度の大変位しか得られなかったのに 対し、5MHz 探触子では7 倍の大変位が得られており、積層探触子の製造スキルが大幅に向上し たことが分かる。

(4)多層積層探触子の問題点とその改善方法(H26~H27)

平成25年度までの研究成果として、大変位超音波送信技術である積層探触子とマルチパルサーによる遅延励振システムを開発できたが、400V励振で積層探触子表面での変位が330 nmと言うのは16層8チャンネル高周波積層素子圧電素子枚数が多く、作製の難易度が高いことを考えると送信超音波変位は十分大きいとは言えない。また、例えば従来の研究で作製された5MHz用積層素子は図3.1.1-2に示すように2枚毎のペアで積層する構造なので素子厚さは0.2 nm程度の10MHz用を使用していた。素子厚さが薄いとそれだけ作成難易度が高くなる。圧電素子を16枚も積層する探触子は、さらに励振するパルサーも8台を要し、これらを考慮するとコストの面からも実用化には課題があった。これらの課題を改善するため、平成26年度から構造を大幅に簡素化した積層探触子を提案した。図3.1.1-7に今回新提案する積層探触子の新しい積層方法を示す。

図 3.1.1-7 4 層積層の新しい積層方法

具体的には、各チャンネルの素子の向きを上下反転させ入力とグランドの位置を変え、CH2 と CH3 の素子間には絶縁層として、音響インピーダンスが圧電素子と同一の分極を落とした同一の 圧電素子を挟む。絶縁層は超音波の伝搬を妨げるが、積層枚数が少なく絶縁層を例えば1枚のみ 使うのであればその影響は大きくない。さらに音響インピーダンスに差がない PZT を絶縁層とし て使用することで、各層を伝搬する過程での減衰は最小限に抑えることが期待される。また、実 用を想定した積層素子構造の大幅な簡素化のため、絶縁層を入れた4層4チャンネルの積層探触 子として作製する。16層8チャンネルの積層探触子に比べ、2層1チャンネル構造から1層1チ ャンネル構造にしたことと、超音波の駆動に係る圧電素子の枚数が16枚から4枚に減らすこと で作成難易度と製造コストが押さえられる。しかし当然のことながら、積層枚数が1/4になるた め送信超音波変位が低くなることが予想されるため、これを補う以下の新しい改良が必要となる。

(5) PZT-C6 圧電素子を用いた積層探触子と SiC パルサーの設計試作(H25~H27) (1) PZT-C 材の利用

圧電素子の代表的な素子が PZT(チタル酸ジルコン酸鉛)であり、PZT の種類は、主にハード 材とソフト材の2種類に分類される。ハード材の特徴は機械的品質係数が高く弾性損失が小さい ため、 高電力駆動においても発熱などの損失が少ない材料群である。ソフト材の特徴は機械的 品質係数が低く、高誘電率で圧電歪定数や電圧出力係数の高い材料群である。本研究で目的とす る大変位超音波の送信用探触子としては、圧電歪定数や電圧出力係数の大きいソフト材が適して いると考えられる。しかし、市販の超音波パルサーとの相性の問題から、これまでに超音波探傷 用探触子としてはハード材が広く利用されており、ソフト材は限定的に利用されるに留まってき た。

②PZT-C 材の電気インピーダンスと静電容量

電源回路と負荷抵抗の間のインピーダンス整合は、負荷抵抗における消費電力を最大とすることを目的とする。鳳-テブナンの定理より、電圧源回路と負荷抵抗の接続は図 3.1.1-8 のような等価回路で表せる。 *A* は内部抵抗、 *A* は外部負荷の電気インピーダンスを表し、 *R* と *X* はそれぞれのレジスタンス成分とリアクタンス成分を表す。電源電圧を *V*_{open}、外部負荷に印加される電圧を *V*₁ とすると、負荷抵抗における消費有効電力 *P* は以下の式(3.1.1-1)で表せる。

図 3.1.1-8 電圧源·負荷抵抗 等価回路

$$\begin{split} P_{1} &= V_{1}I_{\text{all}} \\ &= R_{1}\big|I_{\text{all}}\big|^{2} \\ &= R_{1}\bigg|\frac{V_{\text{open}}}{R_{0} + R_{1} + j(X_{0} + X_{1})}\bigg|^{2} \\ &= R_{1}\bigg|\frac{V_{\text{open}}}{R_{0} + R_{1} - j(X_{0} + X_{1})}\bigg|^{2} \\ &= R_{1}\bigg(\frac{\big|V_{\text{open}}\big|^{2}}{(R_{0} + R_{1})^{2} + (X_{0} + X_{1})^{2}}\bigg) \\ &= \frac{R_{1}\big|V_{\text{open}}\big|^{2}}{(R_{0} + R_{1})^{2} + (X_{0} + X_{1})^{2}} \end{split}$$

式(3.1.1-1)

消費有効電力 P₁は X=-X₁かつ R=R₁にて最大値をとるので、市販のパルサーの出力インピーダ ンスが R=50 Ω であることを考えると、消費有効電力 P₁は、特に R₁が 50 Ωに比べ低い場合、 消費される有効電力 P₁が大きく低下し、大きな印加電圧で励振しても実効電圧が低下して大き な変位が発生できない。

本測定のために準備した探触子素材と寸法、これに伴うインピーダンスと静電容量をインピー ダンスメータで計測した結果を表 3.1.1-1 に示す。PZT-M6 はサイズを 3 種類、C 材の 2 素材につ いては同じ 3 種類の寸法の他に別の 3 種類もそれぞれ追加した。

	Size[mm]	Impedance[Ω]	Capacitance[nF]
	20 × 20	8.14	1.65
PZT-M6	10×10	30. 2	0. 392
	5 × 5	226	0. 127
	20 × 20	1. 38	11.6
	20 × 15	1. 70	9. 02
	20×10	2. 62	6. 14
PZ1-00	20 × 5	6.97	3. 02
	10×10	6.85	3. 21
	5 × 5	51.6	0. 771
	20 × 20	0. 942	39. 25
	20 × 15	1. 084	29. 0
	20×10	1.88	19. 3
PZ1-09	20 × 5	2.95	9. 72
	10×10	2.82	10. 4
	5×5	24. 2	2. 5

表 3.1.1-1 圧電素子種別、サイズと素子基本特性(5 MHz)

表3.1.1-1からPZTのC材はこれまで使ってきたPZT-M材に比べ、インピーダンスが低く静電 容量が大きい。また小サイズの素子はインピーダンスが大きくなり、静電容量が小さくなる。こ れらから、市販の出力インピーダンス50Qの一般的超音波パルサーで、例えばMHz 域の探触子 として標準的な10×10 mmのPZT-C材の素子を励振した場合を考えると、インピーダンスが桁違 いに不整合となり励振電圧が低下し、さらに静電容量が極端に大きいため、小電流トランジスタ を使う一般の超音波パルサーでは十分な電流も供給できず励振できない。これまで、固体の超音 波計測に; PZT-C 材が使われてこなかった理由はここにある。

③新しいパルサーの設計・試作[参考文献(9)~(11)]

SiC (Silicon Carbide、炭化ケイ素)は炭素(C)とケイ素(Si)の化合物の半導体である。 熱伝導性、耐熱性、耐薬品性に優れ、放射線に対する耐性もSi半導体より高いという特徴を持 っ。こうした特徴より、従来のSi半導体より小型、低消費電力、高効率のパワー素子、高周波 素子、耐放射線性に優れた半導体素子として期待されている。平成25年度に試作したSiCパル サーは、1MHz程度までの低周波数において、優位性があることを確認したが、本研究で用いる 5MHz程度の周波数特性が悪く、トランジスタの変更を含めたパルサーの再設計が必要だった。 特に平成26年度は、C材を励振するためのSiCパルサーとして、改めて設計・開発を行った。 本報告では、図3.1.1-9に示す外観の試作した2つのパルサー(出力インピーダンスを5Ωと 0.5Ωとしてそれぞれ設計)についての結果を述べる。これらは、PZT-C材が電気インピーダン スの低い点に整合する。出力インピーダンス5Ωのパルサーの最大励振電圧は実測で1280Vであ り、出力インピーダンス0.5Ωのパルサーの最大励振電圧は実測で1240Vだった。

図 3.1.1-9 SiC パルサーの外観

以下に 20×20 mm の圧電素子について、圧電素子の材質を変え、SiC パルサー(出力インピー ダンス 5Ω)を用いた実験結果を図 3.1.1-10 に示す。横軸は実効電圧で縦軸は変位である。図 中の色は PZT 材質を示し、青は PZT-M6、赤は PZT-C6、緑は PZT-C9 を示す。設定電圧を 110V、 205V、300V、410V、505V、610V、725V、 820V と 8 段階に変えて、レーザー振動計で探触子表面 変位波形を計測し、Peak to Peakの変位を実効励振電圧に対してプロットした。

図 3.1.1-10 励振電圧と出力変位 SiC パルサー(出力インピーダンス 5 Ω) 以上の結果から SiC パルサーを用いた出力変位において、PZT-C9≒PZT-C6>PZT-M6 であった。

さらに圧電素子サイズを変えた実験結果を図 3.1.1-11、図 3.1.1-12 に示す。横軸は実効励振 電圧で、縦軸はレーザー振動計で探触子表面変位波形を計測した、Peak to Peakの変位である。 赤は 20×20 mm、橙は 20×15 mm、緑は 20×10 mm、青は 20×5 mm を表す。また、比較のため PZT-M6 の 20×20 mm のデータも載せた。設定電圧は 110V、205V、300V、410V、505V、610V、725V、 820V の 8 段階である。

図 3.1.1-11 励振電圧と出力変位 SiC パルサー(出力インピーダンス 5Ω) PZT-C6

図 3.1.1-12 励振電圧と出力変位 SiC パルサー(出力インピーダンス5 Ω) PZT-C9

以上から SiC パルサーにおいては PZT-C6、PZT-C9 共に、圧電素子面積を小さくすることで実 効印加電圧が大きくなり、300 nm 程度の変位を得られた。従って、SiC パルサーは C 材の高能率 の励振に適している。また以上の実効励振電圧に対する変位の傾きは、PZT-M6 に比べ、圧電素 子板厚共振能率 d_t (PZT-C6 が PZT-M6 の 3 倍、PZT-C9 は PZT-M6 の 5 倍)程には対応した大きな 傾きまでは示さないものの、C 材が M 材に比べ低インピーダンスであることを考慮すれば、許容 範囲とも考えられる。また既存のパルサーで励振した場合に比べ、SiC パルサー励振による励振 効率は大幅に向上した。

④新しい積層探触子の製作と性能評価

平成26年度までは、積層探触子を独立に作製し、別途作成したくさびとカップラントを介し て接触し、ねじ等で機械的に押さえる構造だった。このため、積層探触子の前面板には、銅箔付 きポリイミド板を保護板も兼ねて使ってきたが、前面のポリイミド板は本来不要であり、ポリイ ミド板表面での不要な反射により送信超音波振幅を低下させると共に、この反射エコーが計測時 のノイズとなる。そこで平成27年度は、積層探触子をくさびと一体型とし、積層探触子の前面 保護板は無くし、電極を付けたPZT-M6材くさびで兼ねて一体型とした。この結果、探触子とく さびの機械接触の不安定要因や不要な反射ノイズが排除されると共に、送信超音波変位の大変位 化にも寄与すると考えられる。また、外部からの電磁ノイズ対策としてアクリルケースをアルミ ケースに変更した。構造の概略を図3.1.1-13に示す。

図 3.1.1-13 くさび一体型 4 層 4 チャンネル探触子概略図

平成26年度に試作した積層探触子の課題として、大電圧励振に対する耐圧が確保できていな かった点を考慮し、各素子の加工精度、接着手順、接着条件、はんだ付けによる結線方法等を見 直した。

以下に積層探触子の作製手順を示す。使用した素子は富士セラミックス、電極ありの 20×20 mm の方形素子で,材質は C6 材、中心周波数は 5MHz である。

1) カッターで 20×20 mmの圧電素子から 10×10 mmの圧電素子を4枚切り出す。

2)切り出した圧電素子の角を図 3.1.1-14 のように切り落とし、できる限り配線同士が離れるような構造とする。素子の有効面積をできるたけ大きくするためにはんだができる必要最低限の スペースをカットした。

図 3.1.1-14 圧電素子の切断図

3)角を切り落とした素子を1000番の研磨紙で表面凹凸を一定にする様、両研磨する。

4)研磨後,超音波洗浄機を用いて超音波洗浄する。このとき、そのまま超音波洗浄を行うと プラス面が分からなくなってしまうため、筆記用具等でプラス面に印をつけておく。

5) ϕ 0.6 mm のはんだを用いて図 3.1.1-15 の位置に強度などを考慮し、はんだ付けをする。

図 3.1.1-15 圧電素子へのはんだ付け位置

6) 各圧電素子と作製した PZT くさびに接着剤の EsetR を図 3.1.1-16 に示す治具を用い て塗布する。接着剤はできるだけ薄く延ばし、塗布面に気泡が入らないように注意す る。

図 3.1.1-16 積層した素子とくさび

7) 積層した圧電素子を加圧機で 0.25 kN で圧縮した状態で図 3.1.1-17 に示すように 17 時間保持し、接着する。

図 3.1.1-17 加圧機を用いた接着

8)素子の導線とプリント基板にはんだ付けする。基盤安定のために瞬間接着剤を用いてくさびと 基盤を図 3.1.1-18 に示すように接着する。その後、ケーブルとプリント基板にはんだ付けす る。

図 3.1.1-18 基盤を用いた積層探触子の配線様子

9)ノイズ対策のためにアルミケースを外枠に取り付け、瞬間接着剤でくさびと接着する。 高電圧励振時の放電対策にエポキシ樹脂を封入して72時間硬化させる。このときエポキシ樹 脂内の気泡を取り除くために、真空脱泡を5分間、2回行う。

図 3.1.1-19 PZT くさびを用いた 300V 励振波形

PZT くさびを用いた4層4チャンネル積層探触子の各チャンネルの設計周波数での変位波形の 測定結果を縦軸に変位、横軸に時間をとったグラフを図3.1.1-19に示す。各チャンネルの変位 波形に差異があるのは研磨精度や接着状態によるものだと考えられ、製造方法等になお改善の余 地がある。また ch1、ch2 に対し ch3、ch4 の波形の変位がわずかに小さくなっているのは中間に ある絶縁層が原因と考えられる。これらの波形が重ね合わさるように遅延時間を設定して遅延励 振を行う。遅延時間のかけ方は各チャンネルの1波目の立ち上がり時間を求め、そこから底面で ある ch1 の立ち上がり時間の差分を遅延時間として、底面から上面に向けて遅延制御した。PZT くさびを用いた4層4チャンネル積層探触子の300V励振時の全チャンネル遅延励振結果を図 3.1.1-19に示す。300V励振電圧で、25 mm 伝搬後のき裂面への入射超音波変位が、Peak to Peakで88 nm 確保された。さらに励振電圧を増やして、積層探触子に印加される実効電圧とレ ーザー変位計で計測した25 mm 伝搬後のき裂面への入射超音波変位(Peak to Peak)の関係を図 3.1.1-20に示す。実効電圧730Vでき裂部において200 nm の変位が確保され、大変位超音波送 信技術として本プロジェクトでの最大変位として、200 nm が確認できた。

図 3.1.1-20 4 層 4 チャンネル積層素子全チャンネル遅延励振波形 (PZT くさび、励振電圧 300V)

図 3.1.1-21 積層探触子における実効電圧と変位の関係

(6)まとめ(H24~H27)

以上、平成27年度までの成果として、3.1.2で実機模擬試験体の計測に利用できる、新超音 波法のシステムの詳細は以下の通りである。

①大変位超音波の送信部(45度入射斜角送信探触子)

1) 単一圧電素子と単一パルサーによる汎用性の高いシステム

単一素子、単一パルサーから成るシステムは、計測の汎用性が高くコストの面でも広範な実用 性を持つと考えている。本研究で、圧電効率の高いPZT-C材とSiCパルサーを組み合わせ、さら に斜角計測用のくさびを音響インピーダンスの差異に伴うロスが少ないPZT-M材に変えたこと で、鋼中を20 mm 伝搬後のき裂端部を想定した最大変位(Peak to Peak)で約100 nm が得られ る様になった。平成25 年時のPZT-M6 材を使った単一圧電素子と単一パルサーによる同様の変位 値が約30 nm であることを考えると、大きな改善が得られた。本システムの特徴は、探触子構造 の単純さにあり、製造のスキルは高いレベルに到達できたと考えている。

2)4 層積層探触子と4 チャンネルの SiC パルサーを組み合わせた高性能システム

平成26年度に提案したPZT-C材の4層積層探触子と4チャンネルのSiCパルサーを組み合わ せた単純構造積層探触子システムについて、平成27年度には製造技術を改善し、さらに製造の スキルを上げることで、鋼中を20mm伝搬後のき裂端部を想定した最大変位(Peak to Peak) は、平成26年度には300V励振時に35 nm程度だったが、平成27年度には730Vの励振でも破損 せず、約200 nmの変位が得られた。送信できる超音波変位ではこれまでの最大変位を示したこ とは大きな成果であり、SPACEを用いたサブハーモニック映像計測システムをより広範な実機き 裂に適用できる道を開くものと考えている。ただ、前述したシンプルな構造の単一素子と単一パ ルサーシステムの最大変位が100 nmに達したことを考えると、本システムの最大送信変位は、 単一素子に比べて複雑な積層探触子の製造部分のスキルアップで更に大きくできる可能性があ る。

②SPACE 受信映像部

1) 従来 SPACE の受信に使ってきた 8 ビットフェーズドアレイシステム

設計は古いが実績のある市販フェーズドアレイシステムの改造版で、SPACE のサブハーモニック画像用のバンドパスフィルタを専用に試作したものである。ダイナミックレンジが低い分、結果的にノイズにも感度が低く、特にサブハーモニック画像で感度を上げた画像化を行った場合のノイズの影響を比較的受けにくいことを確認した。映像化の手順は、映像化の高速性を確保するため、全て IC チップでハード的に処理できる。

2) 新たに導入した 16 ビットフェーズドアレイシステム

最新の開口合成処理機能を持ち、16 ビットのダイナミックレンジを持つ装置で上記 SPACE の 映像化機能を付加したシステムを構築した。当初計画したサブハーモニック波映像化は達成でき たが、以下の課題を残した。導入したシステムの詳細な映像化の設定についてはソフトウェアで 対応するタイプであるため、全てをハードウェアで対応する1)の8 ビットの装置と比べ、機能 が多い。しかしその反面、特別なフィルタリング画像の取得速度が遅い、ソフトウェアを介した 場合のエンコーダーとの連携計測も計測上の制限が大きい等の課題があることを確認した。ま た、ダイナミックレンジが大きい分、微弱なノイズまで例えばサブハーモニック画像に表示され て残るため、1)の8 ビットの装置と比べ見かけの SN 比が必ずしも高くはない。

3.1.2 サブハーモニック波によるき裂計測の有効性検証

(1) 閉口疲労き裂の導入と負荷によるき裂開口の制御(H24~H27)

サブハーモニック波の発生機構は、定量的な検討が内外で研究されているが、なお定量的な解 明には至っておらず、どういうき裂でサブハーモニック波が発生し、あるいは発生しないのか明 確ではない。これらのメカニズムの解明を目指して、多くの理論検討や実験が行われているが、 実験においてはサブハーモニック波が安定して発生するき裂の作製や計測システムが確立できて おらず、また解析においても実験で観察されるサブハーモニック波挙動を再現できる定量的解析 モデルは確立できない状況が続いている。本研究で用いる試験片はASTM-E399 に従った図 3.1.2-1 に示す、長さ 200 mm、幅 40 mm、厚さ 10 mm、切欠き長さ 8 mm、き裂長さ 20 mm の 3 点 曲げ試験片で、支持点間距離を 160 mm とした。ここでは実験的にサブハーモニック波の発生挙 動を調べることを目的とした。具体的には、まず疲労試験により閉口疲労き裂を導入し、き裂の 最終進展時の最大負荷荷重の 8 割程度までの負荷により、弾性範囲において可逆的にき裂を開閉 口しながら、SPACE でサブハーモニック超音波の発生挙動を調べた。[参考文献(12)]

図 3.1.2-1 試験片寸法

線形破壊力学では、疲労試験時の負荷1サイクルあたりのき裂進展速度(da/dN)が、き裂先端の応力拡大係数の変動幅 ΔKで整理できる。ΔK一定でき裂を導入すると、き裂の進展に伴って ΔKは大きくなるので、負荷荷重を徐々に落としていくことになる。また、最大応力拡大係数 Kmaxは、最大応力σmaxとき裂長さaで次式により表せる。

 $\Delta K = K_{max} - K_{min} \cdots (\ddagger 3.1.2 - 1)$

$$K_{max} \doteq \sigma_{max} \sqrt{\pi a} \cdots (\ddagger 3.1.2-2)$$

疲労き裂前方の塑性域寸法 r_p は ΔK に依存し、 ΔK が大きいと r_p は大きく、疲労によるくり返し 引張応力により除荷後、き裂進展後のき裂表面下に均等の寸法で ΔK に依存した圧縮応力が残留 することで、き裂は閉口する。最終的に閉口した疲労き裂に、その最終き裂寸法における最大負 荷応力 σ_{max} 以下の応力を付加してき裂を開口しても、弾性範囲で可逆的にき裂を開閉口させる ことができる。表 3.1.2-1に作製したき裂の一覧を、図 3.1.2-2に導入した閉口疲労き裂へ小負 荷をかけた場合のき裂の開閉挙動の模式図を示す。 20

表 3.1.2-1 作製したき裂一覧

材料

SCM440					
	17	20.00	980	708000	47.9
	14	20.01		1478000	32.5
	12	20.01		3996000	23.9
	10	20.00		7084000	16.6
	9	20.01		25590000	13.4
S50C	12	20.01	363	10873000	173.9
SUS304	12	20.01	206	636000	540.1
	11	20.01		1336000	453.8

塑性域寸法[μm]

66.3

443000

応力拡大係数ΔK[MPa√m] | き裂長さ[mm] | 降伏応力[MPa] | サイクル数[回]

20.01

図 3.1.2-2 導入した閉口き裂への小負荷による開閉挙動

疲労試験片への負荷にはAttonic 製の手動門型荷重試験機(ATS-20 KNH(S)型)を用い、治具に より3点曲げにてき裂を導入した試験体に荷重を負荷した。定格負荷は最大20kNであり、負荷 は手動だが負荷荷重は添付のロードセルにより、正確な計測が可能である。図 3.1.2-3 に荷重負 荷装置の外観を示す。

図 3.1.2-3 荷重負荷装置外観

¹⁷

(2) SPACE を用いた疲労き裂試験体の計測(H25~H27)

疲労き裂試験体における新超音波法の測定条件は、最大印加電圧 1000V、デジタルフィルタに はバンドパスフィルタを用い、ω画像用には 4.0~6.0MHz、ω/2 画像用には 2.0~3.0MHz の連立 チェビシェフ特性のバンドパスフィルタで、線形計測とサブハーモニック計測の音響画像を分離 する。フィルタのリップル値 0.5dB、阻止域の減衰量は 40dB である。SPACE 画像描画範囲は、ア ングル 28~55°(1.4°刻み)、深さ 15~50 mm(1.4 mm 刻み)として底面とき裂が描画範囲に入る よう調整した。受信部にはフェーズドアレイ探触子を用い、使用エレメント数は 32 素子だっ た。「参考文献(12)]

①サブハーモニック波が有効ではない例

測定結果をき裂の見え方から分類するとき裂先端が開口していてサブハーモニック画像ω/2 が有効ではないき裂、き裂端部が閉口していてサブハーモニック画像ω/2が有効ではないき裂 とさらに、き裂先端が開口していてサブハーモニック画像ω/2が有効なき裂、き裂先端が閉口 していてサブハーモニック画像ω/2が有効なき裂がある。

まずはき裂先端が開口していてサブハーモニック波が有効ではないき裂の測定例を示す。

作製した S50C 試験片 Δ K=12 MPa \sqrt{m} の負荷荷重 0 kN、0.6 kN、の結果を図 3.1.2-4、図 3.1.2-5 に示す。計測映像の見方としては扇形の中心部が受信点であり、映像中に下部赤色が試験片底面エコーである。底面エコーとき裂先端エコーは矢印にて示してある。き裂は疲労試験機で深さ 20.00 mm まで進展するように制御し、試験完了時の想定き裂深さ(黒線)をクリップゲージにより計測からコンプライアンス法で算出した。

 \boxtimes 3.1.2-4 S50C Δ K=12 MPa \sqrt{m} 0 kN

図 3.1.2-4の基本波像 ω から、き裂の応答が底面から約 20 mmの位置が確認でき、また、サブ ハーモニック波画像 $\omega/2$ も同様に底面から 20 mmの位置に応答振幅が確認できる。

図 3.1.2-4、図 3.1.2-5 から、0.6 kN の荷重負荷により基本波像、サブハーモニック波像も同様に応答振幅が強くなっている。

この時サブハーモニック波が発生しているか否かを確認するために、フィルタリング前の受信 波形をウェーブレット変換した。図 3.1.2-6、図 3.1.2-7 にウェーブレット変換の結果を示す。

これには受信波形とき裂先端の位置を示してあり、ウェーブレット変換した結果が波形の下に 示してある。ウェーブレット変換の見方としては、横軸が時間、縦軸が周波数を示す。

図 3.1.2-7 S50C∆K=12 MPa√m 0.6 kN ウェーブレット変換

図 3.1.2-6、 図 3.1.2-7 を見ると、き裂端部では ω 成分は(5 MHz)は確認できるものの ω /2 成分(2.5MHz)は明確に出現していない。よって図 3.1.2-4、図 3.1.2-5 の ω /2 画像で見られるサブ ハーモニック画像におけるき裂画像は、 ω 成分の漏れが増幅されたものであり、S50C 試験片 Δ K=12 MPa \sqrt{m} ではサブハーモニック波は発生していないと判断した。

次にき裂端部が閉口していてサブハーモニック画像 $\omega/2$ が有効ではないき裂の測定例を示 す。想定導入き裂深さは 20.00 mm である。作製した SUS304 試験片の Δ k=11 MPa \sqrt{m} の負荷荷重 0 kN、0.8 kN、1.2 kNの結果を図 3.1.2-8、図 3.1.2-9、図 3.1.2-10 に示す。基本波像の赤丸 で囲んだ応答がき裂先端の応答である。

 \boxtimes 3.1.2-8 SUS304 Δ K=11 MPa \sqrt{m} 0 kN

 \boxtimes 3.1.2-10 SUS304 Δ K=11 MPa \sqrt{m} 1.2 kN

図 3.1.2-8 の ω 画像から SUS304 試験片の 0 kN では、クリップゲージの想定き裂長さ 20.00 mm に対してき裂先端の位置が約 18 mm であり、き裂先端約 2 mm が閉口している可能性がある。また、 $\omega/2$ 画像も同様に、き裂先端の位置が約 18 mm だがその振幅応答は小さい。荷重負荷した図 3.1.2-9、0.8 kN の ω 画像からき裂先端が約 20 mm の位置となっている。 $\omega/2$ 画像もやはり振幅 は小さいものの、20 mm の位置に応答を確認できる。さらに荷重を負荷した図 3.1.2-10、1.2 kN では ω 画像、 $\omega/2$ 画像でともに、き裂端部付近の応答が強くなっている。

次に受信波形をウェーブレット変換した結果を、それぞれ図 3.1.2-11、図 3.1.2-12、 図 3.1.2-13 に示す。

図 3.1.2-13 SUS304 ΔK=11 MPa√m 1.2 kN ウェーブレット変換

図 3.1.2-12、図 3.1.2-13 を見るとき裂端部では ω 成分は(5 MHz)は確認できるものの、明確 な $\omega/2$ 成分(2.5 MHz)は確認できなかった。よって図 3.1.2-8、図 3.1.2-9、図 3.1.2-10 の $\omega/2$ 画像で確認されたサブハーモニック画像は、 ω 成分の漏れを増幅することにより表示されたもの であり、SUS304 試験片 Δ K=11 MPa \sqrt{m} ではサブハーモニック波が発生していないと判断した。

②サブハーモニック波が有効な例

次にき裂先端が開口していてサブハーモニック波が有効なき裂の測定例を示す。想定き裂深さ は 20.01 mm となっている。作製した SCM440 試験片 Δ K=9 MPa√m の負荷荷重 0.0 kN、0.6 kN、 0.8 kN の結果を図 3.1.2-14、 図 3.1.2-15、図 3.1.2-16 に示す。

 \boxtimes 3.1.2-14 SCM440 Δ K=9 MPa \sqrt{m} 0 kN

 \boxtimes 3.1.2–16 SCM440 Δ K=9 MPa/m 0.8 kN

図 3.1.2-14 からω画像、ω/2 画像にてともにき裂先端の応答が深さ 20 mm の位置にある。図 3.1.2-15、図 3.1.2-16 から荷重を負荷することにより基本波像の応答は強くなるが、ω/2 の応 答は弱くなっており、ω画像とω/2 画像にて荷重負荷によるき裂応答の挙動が異なる。

次に受信波形をウェーブレット変換した結果を図 3.1.2-17、図 3.1.2-18、図 3.1.2-19 に示 す。

図 3.1.2-17 SCM440∆K=9 MPa√m 0 kN ウェーブレット変換

図 3.1.2-18 SCM440 ΔK=9 MPa√m 0.6 kN ウェーブレット変換

図 3.1.2-19 SCM440 ΔK=9 MPa√m 0.8 kN ウェーブレット変換

図 3.1.2-17、図 3.1.2-18、図 3.1.2-19 から負荷 0 kN、0.6 kN において、ω/2 成分(2.5MHz) を確認することができるのに対し、さらに荷重を負荷した 0.8 kN ではω/2 成分が消失する。以 上から荷重 0 kN から 0.6 kN まではサブハーモニック波が発生し、さらに荷重を負荷した 0.8 kN ではサブハーモニック波が発生しなくなると判断した。

次にき裂端部が閉口していてサブハーモニック画像ω/2が有効なき裂の測定例を示す。想定 き裂深さは 20.01 mm だった。

作製した SUS304 試験片 ΔK=12 MPa√m の負荷荷重 0 kN、0.4 kN、0.8 kN、1.2 kN の結果を図 3.1.2-20、図 3.1.2-21、 図 3.1.2-22、図 3.1.2-23 に示す。

 \boxtimes 3.1.2-20 SUS304 Δ K=12 MPa \sqrt{m} 0 kN

⊠ 3.1.2-21 SUS304 Δ K=12 MPa \sqrt{m} 0.4 kN

 \boxtimes 3.1.2–22 SUS304 $\Delta\,\text{K=12}$ MPa/m 0.8 kN

 \boxtimes 3.1.2-23 SUS304 Δ K=12 MPa \sqrt{m} 1.2 kN

図 3.1.2-20 の 0 kN のω画像より、クリップゲージの想定き裂深さ 20.01 mm に対してき裂先端が 18.02 mm であり、き裂先端約 2 mm が閉口している可能性がある。また、ω/2 画像では、 き裂先端約 20 mm の位置に応答が確認できる。

図 3.1.2-21 の 0.4 kN の ω 画像を見るとき裂先端の応答は弱くなるが、 $\omega/2$ 画像ではき裂先端の応答が増加した。

図 3.1.2-22 の 0.8 kN のω画像を見るとき裂先端の応答が 18.06 mm から 20.10 mm となでは挙動が異なる。

図 3.1.2-23 の 1.2 kN の ω 画像、 ω / 2 画像ともに振幅応答は強くなる。

次に受信波形をウェーブレット変換した結果を、図 3.1.2-24、図 3.1.2-25、図 3.1.2-26、図 3.1.2-27 に示す。

図 3.1.2-24 SUS304 ∆K=12 MPa√m 0 kN ウェーブレット画像

図 3.1.2-27 SUS304 Δk=12 MPa√M 1.2 kN ウェーブレット画像

図 3.1.2-24、図 3.1.2-25、図 3.1.2-26、図 3.1.2-27 から負荷 0 kN から 0.4 kN までにおい てサブハーモニック成分(2.5MHz)成分が確認できるが、それ以上の負荷では明確にサブハーモニ ック成分(2.5MHz)は消失した。SPACE 映像とウェーブレット画像から 0 kN から 0.4 kN までサブ ハーモニック波が発生し、それ以上の負荷においてはサブハーモニック波が発生していないと判 断した。

(3) 疲労き裂端部エコーがサブハーモニック画像で検出できた事例(H26~H27)

非線形計測の適用範囲として SUS304 と SCM440 について測定結果を図 3.1.2-28、図 3.1.2-29

にまとめた。荷重を負荷してき裂を開口しながら、入射超音波振幅を印加電圧増加で増やした場合、き裂端部にサブハーモニック波が発生したものを、赤丸で示した。負荷荷重は0kN、0.2kN、0.4kN、0.6kN、0.8kN、1.0kN、1.2kN探触子の励振電圧は200V、400V、600V、800Vとした。 既存のSPACEで300Vまでの励振では、SUS304で200V(~300V)の励振時に、負荷荷重0.6kNの時しかSPACEが有効では無かったが、耐圧を上げたPZTくさび一体型の斜角探触子で、送信変位を大きくした結果、SUS304、SCM440共、他のき裂性状においてもサブハーモニック波が発生し、SPACEを用いたき裂端部の同定が可能になった。

SUS304 Δ K=12 MPa \sqrt{m} において 13 条件、SCM440 Δ K=9 MPa \sqrt{m} において 12 条件においてサブハーモニック波の発生を確認した。

図 3.1.2-29 開口量、超音波変位とω/2の発生の有無(SCM440)

図 3.1.2-28 で、超音波入射変位が 47 nm では 2 条件で $\omega/2$ が発生したが、超音波入射変位を 74 nm、89 nm と増加させると 4 条件で $\omega/2$ が発生する。これは入射変位の増加にともない、た たき合いが生じやすくなったためと考えられる。また開口量 δ が 0 nm のときには、入射変位 24 nm で $\omega/2$ は発生しない。ここでの開口量 δ は Dagdale の式による参考予測値であり、負荷によ る開口量のみを計算しており、き裂面の凹凸により 20 nm 以上の隙間が生じている可能性がある。 また、SUS304 では残留圧縮応力によりき裂の叩き合いが抑制されている様に見えるが、図 3.1.2-29 の SCM440 においてはそのような傾向はない。これは、SCM440 が SUS304 に比べ、きれ き裂導入時の塑性域寸法が小さいため残留圧縮応力が小さく、き裂の叩き合いが抑制されないた めと考えられる。

(4) サブハーモニック波の発生機構(H26~H27)

①既存の数理的解析モデル

サブハーモニックの定性的発生機構の模式図を図 3.1.2-30 に示す。この図のように入射した 超音波の振幅がき裂開口量より大きい時に叩き合いが発生する。その一部のき裂においてサブハ ーモニック波が発生し、その様子をシミュレーションした結果をグラフに示すと縦軸が振幅、横 軸が時間で入力の黒い波形に対してき裂面で波形の形状が振幅の大きい波と小さい波が交互の独 特な波形が出現し、周波数解析を行うと入射波の周波数成分の半分の周波成分が確認できる。 [参考文献(13)]

図 3.1.2-30 サブハーモニック発生機構模式図

サブハーモニック波発生機構の解明のため、これまでに定量解析の分野では標準的 FEM (Finite Element Method:有限要素解析法)と、図 3.1.2-31 に示す平面き裂モデルを用いた多 くの解析が行われてきた。これらは全てき裂を2枚の平板の2重接点モデルとしてモデル化し、 一方の面に超音波の入射し、き裂開口より入射超音波変位が大きいと、き裂開口を越して叩きあ いを生じ、反対の面に振動が伝わると考える。

図 3.1.2-31 平面き裂モデル(従来法全てのき裂モデル)

これが超音波のき裂透過挙動を表しており、さらにこの叩き合いに何らかの要因で不規則な運動が付加されるとサブハーモニック波が発生する場合があると考えられてきた。しかしこれまでの報告によれば、ほぼすべての解析で高調波(2ω、3ω…)は容易に発生するものの、サブハーモニック波(ω/2)の発生は報告されていない。最近の報告で、き裂面に粘性定数やばね定数を設定するモデルを用いるとサブハーモニック波が発生したとの報告もあるが、汎用に利用するにはき裂の粘性定数やばね定数を新たに定義する必要があり、少なくとも工学的には使いにくいモデルと考えられている。

②平成26年度に提案した凹凸き裂モデル

本研究室では、図 3.1.2-32 に示した実機き裂の破面観察から、叩き合いを生じるき裂面は実際にはこれまでの解析モデルである平面接触とは大きく異なっており、サブハーモニック波の発 生機構にはき裂表面の凹凸形状が大きく関与するのではないかと考えた。[参考文献(14)]

図 3.1.2-32 SUS304 の実き裂破面

これらき裂の凹凸を反映できるき裂モデルとして、本研究室では、図 3.1.2-33 に示す球が連なる 2 重接点モデルを解析モデルとして提案し、その有効性を検証してきた。

図 3.1.2-33 球状 2 重接点き裂モデル

例えばこれまでの図 3.1.2-31 の様な平面モデルでは、疲労き裂で導入される残留圧縮応力を 考慮すると、初期き裂開口をいくつに設定しても僅かな残留応力でき裂は完全に閉じる。しかし 実機部材の定期検査を想定すると、既存の超音波法で殆どの実機き裂は探傷出来ており、き裂面 の多くは開口している。図 3.1.2-33 のモデルでは初期開口δに対し、残留応力が作用しても両 端の大きな球が突っ張りあうことで開口は維持され、き裂部がたわむことで中心部においてたた き合いが生じる。同じ大きさの球を並べたモデル(既存の平面モデルに相当する)での解析結果 を、図 3.1.2-34 に示す。

図 3.1.2-34 球状き裂モデルで平面き裂モデルを模擬した解析結果

図 3.1.2-34 の上図は透過波形を、下図は FFT (Fast Fourier Transform:高速フーリエ変換) により周波数解析した結果を示す。ここでは青矢印の基本波のみが検出され、オレンジ矢印のサ ブハーモニック波は検出できない。一方、き裂長さ L=1 mm のモデルで、き裂凹凸モデルで突っ 張る球の大きさを非対象にした時の解析結果を図 3.1.2-35 に示す。

図 3.1.2-35 非対象球状 2 重接点き裂モデル (L=1 mm)

青矢印の基本波振幅を 1 とした時、オレンジ矢印のサブハーモニック波は 0.56 の振幅で明確 に検出できた。さらに、き裂長さLを100μmに取ったき裂凹凸モデルによる解析結果を図3.1.2-36 に示す。L=1 mm の解析同様の非対称モデルで、青矢印の基本波振幅に対し、オレンジ矢印の サブハーモニック波は 0.51 の振幅で明確に出現することが分かる。

このように新しいき裂モデルを用いてき裂面間の隙間量及びき裂面の凹凸を考慮すると、これ まではき裂面に特別の粘性定数等を想定しないと発生しなかったサブハーモニック波が、き裂長 さLを変えても容易に発生することを確認した。実際のき裂面では図 3.1.2-32 の破面観察で確 認した様に、模式的には図 3.1.2-37 に 2 次元的に示したように、き裂の接触部間隔(き裂長さ L)がき裂性状に依存して一定の分布でランダムに接触しており、大変位超音波の送信により、 nmの隙間の中央部分付近でたたき合いが生じると考えられる。これらの透過波形の積分が受信波 形であり、一定の条件下でその透過波にサブハーモニック波成分が発生するものと考えている。

図 3.1.2-37 様々のき裂長さLが分布する実機き裂のモデル

この結果から、実機き裂形状を忠実に模擬できる解析モデルへの期待が膨らむが、実際のき裂 面は、まず3次元の分布を持ちLの分布はかなりばらつきを持つと考えられる。また、き裂面の 観察に依れば、µmオーダーの凹凸が無数に存在しながらき裂が叩き合う部位のき裂開口はnm オーダーであると考えられる。この形状を正確にモデル化するためnmオーダーの要素解析が期 待されるが、現在の計算機レベルでは、スーパーコンピュータをもってしても、nm オーダーの 解析には、解析要素数、解析時間が指数関数的に増加し、解析は不可能である。従って、現状の モデル程度の解析だけではサブハーモニック波の定量発生機構の考察には限界もあるため、ここ で提案したモデル解析を進めると共に実験によるき裂でのサブハーモニック波挙動を観察し、両 者を考察しながら、き裂におけるサブハーモニック波の発生機構を議論する必要があると考えら れる。

(5)実機模擬欠陥試験体の観察(H25~H27)

発電技検で作製した模擬試験体の計測結果と既存のフェーズドアレイ法と比較した新超音波法 の有効性の実証については、東北大と発電技検の共同実験であり、発電技検の報告に詳細を譲 る。ここでは1点のみ、新超音波法による計測の優位性を実証した PSS-1のき裂計測結果を図 3.1.2-38 に示す。既存の SPACE での計測(400V 励振)では、き裂端部エコー(図中赤丸部)は線 形計測(ω画像)でも SN 比が悪く検出できないし、サブハーモニック画像(ω/2 画像)ではエ コーすら計測できない。本プロジェクトで達成した大変位化技術で 700V、1000V とき裂に入射す る超音波変位を大きくしていくと、線形画像の端部エコー振幅は 700V、1000V と大きくなるが他 の形状エコーも振幅を増す。これに対しサブハーモニック画像では、1000V で初めてき裂端部エ コーが出現する。入射超音波振幅の増加に伴ってき裂端部エコーが出現する挙動から、この場所 は線形画像の計測結果と共に考察してき裂端部であると判断することができる。

図 3.1.2-38 PSS-1の SPACE による欠陥計測結果の一例

(6) まとめ (H24~H27)

本プロジェクトでは、既存の SPACE 計測システムにおいて、大変位超音波入射技術を組み合わ せることで、新超音波法を開発してきた。き裂の開口を制御した各種疲労き裂や実機模擬欠陥に おいて、既存の SPACE でサブハーモニック波が発生せず、SPACE が使えなかった多くのき裂にお いて入射超音波の大変位化によりサブハーモニック波が発生することを確認できた。即ち、入射 超音波の大変位化技術は SPACE の実機き裂への適用に極めて有効であり、これらのサブハーモニ ック波発生挙動をデータベース化することで、き裂におけるサブハーモニック波の発生機構解明 に貢献できる可能性がある。

一方試作した模擬き裂試験体のうち異材継手溶接試験体では、後述する様に既存の線形計測法 でも新超音波法でも、端部エコーの検出は困難だった。本プロジェクトの次のステップとして、 既存の計測が適用困難な異材継手溶接部の欠陥検出を目標に、更なる入射超音波の大変位化を目 指したいと考えている。

参考文献

- (1) O. Buck, W. L. Morris, J. M. Richardson, Acoustic harmonic generation at unbonded interfaces and fatigue cracks, Appl. Phys Lett. 33 (1978) 371-373.
- (2) I. Y. Solodov, C. A. Vu, Popping Nonlinear and Chaos in Vibrations of a Contact Interface between Solids, Acoustical Physics, 39(5), pp. 476-479, (1993)
- (3) A. Moussatov, B. Castagnede, V. Gusev, Frequency up-conversion and frequency downconversion of acoustic waves in damaged materials, Phys. Lett. A301 (2002) 281-290.
- (4) M. Akino, T. Mihara, K. Yamanaka, Fatigue Crack Closure Analysis Using Nonlinear Ultrasound, Review of Progress in Quantitative Nondestructive Evaluation, 23, pp. 476-479, (2004)
- (5) 関西電力プレスリリース:http://www1. kepco. co. jp/pressre/2008/0926-3j. html
- (6) Y. Ohara, T. Mihara, R. Sasaki, T. Ogata, S. Yamamoto, Y. Kishimoto,
 K. Yamanaka, Imaging of Closed Cracks using Nonlinear Response of Elastic Wave at Subharmonic Frequency, Applied Physics Letters, 90, pp. 011902-1-3, (2007)
- (7) 三原毅「超音波発受信器および超音波計測装置」特許出願 No. 2010-233738、特許公開:2012-88113
- (8) T. Mihara, T. Hamajima and H. Tashiro, Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser, Proceeding of the Conference for Review of Progress in Quantitative NDE, p. 27, (2012)
- (9) R. Koda, T. Mihara, G. Konishi, Y. Udagawa, Development of large displacement SiC pulser for subharmonic ultrasound measurement (サブハーモニック超音波計測のため大 変位 SiC パルサーの 開発), 第 35 回超音波エレクトロニクスの基礎と応用に関するシンポ ジウム講演論文集、pp. 427-428 (2014)

3.1-34

- (10) T. Mochizuki, N. Tsurui, N. Hosaka, R. Koda, K. Masuda, Quantitative measurement of acoustic radiation force on a thin catheter to apply to endovascular therapy, Jpn. J. Appl. Phys., Vol. 53, 07KC09 (2014)
- (11) R. Koda, J. Koido, N. Hosaka, S. Onogi, T. Mochizuki, K. Masuda, R. Suzuki, K. Maruyama, Evaluation of active control of Bubble liposomes in a bifurcated flow under various ultrasound conditions, Advanced Biomedical Engineering, Vol. 3, pp. 21-28 (2014)
- (13) K. Yamanaka, T. Mihara, T. Tsuji, Evaluation of Closed Cracks by Model Analysis of Subharmonic Ultrasound, Jpn. J. Appl. Phys. 43-5B (2004) 3082-3087.
- (14) T.Mihara and H. Ishida, Improvement of identification of a crack tip echo in ultrasonic inspection using large displacement ultrasound transmission, Journal of Physics, Coference Series 520, 012010 (2014)

3.2 新X線計測技術の開発(再委託先:金沢大学)(H24~H27)

3.2.1 小型X線回折装置の開発

(1)X線応力測定の原理

本技術は、結晶格子による特性 X 線の回折現象を利用するものであり、被測定物は微細な 結晶粒からなる多結晶集合体で出来ていることを前提とする。このような条件は、原子力機 器に用いられている大部分の材料が満たしており、本技術の適用範囲は広い。また、一般の 工業材料(構造用材料)でも同様である。以下ではまず、本技術の基礎となる X 線の回折現 象を規定する法則である Bragg の回折条件について説明する。

多結晶集合体を構成する個々の結晶粒では、原子が規則的に配列しており、その結果、結晶の内部では種々の格子面を形成している。そして、各格子面同士の間隔はそれぞれ一定値を持っている(格子面間隔 d)。図 3.2.1-1 では、そうした格子面群の1つを平行な線で表している。次に、特性 X線(波長 λ が一定値)が結晶に照射されると、X線は結晶中の個々の原子で散乱されるとともに、他の原子で散乱された X線同士が互いに干渉し合い、特定の方向(Bragg 角 θ)に対して強い X線(回折 X線)を発生させる。この現象は以下の式で表すことができる(Bragg の回折条件式)。

$2dsin\theta = n\lambda$

n:自然数(n = 1, 2, 3・・・)

式(3.2.1-1)

図 3.2.1-1 結晶格子による X線の回折現象の説明図

3.2 - 1

特性 X 線を使用する場合を考え、波長 λ を一定値として式(3.2.1-1)を偏微分すると、ひず みに関する次式の関係が得られる。

$$\varepsilon = \frac{d_0}{d} = (\theta_0 - \theta) \cot \theta_0$$

 $d_0: ひずみが無いときのdの値 \theta_0: ひずみがないときの <math>\theta$ の値

式(3.2.1-2)からは、格子面間隔を基準とするひずみが回折 X 線の現れる方向(Bragg 角) である θ と θ_0 を求めることで計算可能になることが判明する。

ここで、 $\theta \geq \theta_0$ はX線回折装置を用いることで測定可能である。また、その測定方法と して本プロジェクトではX線用の二次元検出器であるイメージングプレート (IP)を適用す る。IP を用いると、測定部位から発生する回折環を計測することが可能となる。この模様 を図 3.2.1-2 に示す。すなわち、X線照射面積内には微細な結晶粒が互いにランダムな方位 を有して多数存在し、その中の複数の結晶粒における結晶格子から回折する X線は図に示 すような円錐を形成する。IP を円錐の軸(すなわち、入射 X線ビーム)に垂直に配置する と、IP 上には円形の回折パターンが得られる。この円環を回折環(または、Debye-Scherrer ring)と呼ぶ。次式の関係を用いると、回折環の半径 R(α)から Bragg 角が得られる (α は 回折環の中心角)。

図 3.2.1-2 X線回折による回折環の発生原理の説明図

式(3.2.1-2)

$$\theta(\alpha) = \frac{\pi}{2} - \frac{1}{2} tan^{-1} \left(\frac{R(\alpha)}{C_L} \right)$$

 $C_L : カメラ長 (X 線の照射点と検出器との距離)$

回折環の半径 R(α)は、計測された回折環画像を解析して回折線強度分布(以下、回折プロフィル)を求め、ガウス関数近似法又は半価幅中点法を用いてピーク位置決定を行うことで求めることが可能になる。図 3.2.1-3 にその方法の概要図を示す。同図には、塑性ひずみの評価に利用する半価幅の求め方についても示されている。

式(3.2.1-3)

式(3.2.1-4)

(a) 回折環画像データ (b) 回折プロフィル (c) ピーク位置 (d) 半価幅

図 3.2.1-3 回折環画像からのピーク位置の変化($\Delta \theta = \theta - \theta_0$)および半価幅の決定

以上のような手順によって回折環全体から回折環の半径、Bragg 角、ひずみ、半価幅を決 定することが可能となる。本プロジェクトでは回折環の中心角を 500 分割し、それぞれの中 心角に対する回折プロフィルを求め、そこから得られる回折環の半径、Bragg 角、ひずみ、 半価幅の各値を 500 個ずつ決定した(中心角 α について 0.72°間隔)。

続いて、以上によって得られたひずみを Hooke の法則に基づいて応力に変換する。なお、 この際に、次のような仮定を設けて進めていく。

- ① 三軸応力状態であること
- ② X線侵入深さの範囲において応力勾配は存在しない
- ③ 材料は等方均質である

なお、従来技術では①に対して平面応力状態を仮定している。②および③については本プロ ジェクトと従来技術は同じ仮定である。このような仮定を置いた場合、回折環から得られる ひずみは測定試料の応力に対して以下の関係がある。

$$\varepsilon_{ij}^L = \omega_{3i}\omega_{3j}\varepsilon_{ij}^S$$

3.2-3

ここで、ω_{ij}は試料座標系(S)から実験座標系(L)への座標変換マトリクスであり、次式で与 えられる。

式(3.2.1-3)は、新X線技術におけるひずみ測定の基礎式である。 次に、応力測定のための基礎式を導出するため、次式の Hooke の法則の関係式を用いる。

$$\sigma_{ij} = \frac{1}{\frac{1}{2}s_2} \left[\epsilon_{ij} - \delta_{ij} \frac{s_1}{\frac{1}{2}s_2 + 3s_1} (\epsilon_{11} + \epsilon_{22} + \epsilon_{33}) \right]$$

式(3. 2. 1-6)
る: クロネッカーのデルタ

また、 $s_1 \ge s_2$ は X線的弾性定数であり、次式のようにヤング率 E とポアソン比 ν から求め られる値である。ただし、E および ν は回折弾性定数であり機械的に求めた値とは最大 20% 程度異なる場合がある。

$s_1 = \cdot$	$-\frac{v}{E}$	式(3.2.1-7)
$\frac{1}{2}s_2 =$	$=\frac{1+\nu}{E}$	式(3.2.1-8)

式(3.2.1-3)および式(3.2.1-5)は、新X線技術における応力測定のための基礎式である。

以上の関係式を基礎として、平らは平面応力状態の場合に対して工業的に高精度な応力 測定が可能となるデータ解析法を提案し、cosα法と名付けた。平らは、cosα法の検証実 験において写真フィルム法を用いて行った。その後、1980年代にイメージングプレート(IP) が開発され、吉岡らにより自作した IP 読み取り装置を用いて cosα 法への適用が試みられ た。吉岡らは回折環の画像データの解析を二値化して行っており、回折環強度分布に関する 分解能に関して課題が残った。その後、佐々木らは、画像処理プログラムを開発し、回折環 画像データを構成している碁盤の目状のピクセルデータから任意の極座標上の回折強度分 布を高精度に求める方法を可能とした。この結果、回折強度分布に対する分解能が飛躍的に 改善され、回折ピーク位置決定の精度が向上した。これにより cosα 法による応力測定精度 が大きく向上した。さらに、外注企業との共同開発を進め、回折環画像データのピクセル配 置を極座標状にすることに成功し、また、回折環の中心位置決定アルゴリズムを開発し、基 準試料の測定を行わなくても中心位置が十分推定可能とした。一方、応力決定のためのデー タ解析理論に関しても新開発がなされ、新たに、三軸応力状態に対する全三軸応力成分の決 定理論や、多相材料に対するマクロ応力・ミクロ応力・相応力の解析理論を開発した。さら に、中性子応力測定へも発展させ、X線に比べて約1000倍の侵入深さとなるゲージ体積か らの中性子回折環データに対しても応力測定可能な新データ解析方法を開発した。

一方、宮崎と佐々木は、cos α 法とは異なる新しい応力解析理論を開発し、フーリエ法と 名付けた。フーリエ法の特長は回折環から得られるひずみをフーリエ級数に表すことを基 礎として、cos α 法で必須となる 4 個のひずみのセットを必要とせずに応力が求められるこ とを明らかにし、二次元 X 線検出器方式の X 線応力測定法の有効性を飛躍的に上げること に成功した。以下では、本プロジェクトで主に適用した一般化 cos α 法の理論の概要をまと めて示す。

X線照射点に図3.2.1-4に示すような試料座標系 xyz を設定し、その原点の応力成分を以下のように表す。

 $\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{pmatrix}$ $\vec{\pi}(3, 2, 1-9)$

図3.2.1-4 一般化 cos a 法の X 線光学系および測定原理で設定する座標系

デバイリングの各部分からは、式(3.2.1-2)、(3.2.1-3)を用いてひずみが得られるが、デバイリン グ上の中心角が α の位置から得られるひずみを ϵ_{α} と表記すると、等方性材料の場合、X 線照射位 置における応力に対して式(3.2.1-4)は具体的に次式となる。

$$\begin{aligned} \varepsilon_{\alpha} &= \frac{\sigma_{x}}{E} [\omega_{31}^{2} - \nu(\omega_{32}^{2} + \omega_{33}^{2})] + \frac{\sigma_{y}}{E} [\omega_{32}^{2} - \nu(\omega_{33}^{2} + \omega_{31}^{2})] \\ &+ \frac{\sigma_{z}}{E} [\omega_{33}^{2} - \nu(\omega_{31}^{2} + \omega_{32}^{2})] \\ &= \tau_{xy} \frac{2(1+\nu)}{E} \omega_{31} \omega_{32} + \tau_{xz} \frac{2(1+\nu)}{E} \omega_{31} \omega_{33} + \tau_{yz} \frac{2(1+\nu)}{E} \omega_{32} \omega_{33} \end{aligned}$$

入射 X 線を測定試料に照射させた場合に測定される回折環からは、応力計算に十分な数の ひずみ ϵ_{α} が得られる。

次に、図 3.2.1-4 に示すように回折環上の 4 箇所のひずみから次式のパラメータ a₁ および a₂を求める。

$$a_{1}(\phi_{0}) = \frac{1}{2} [(\varepsilon_{\alpha} - \varepsilon_{\pi+\alpha}) + (\varepsilon_{-\alpha} - \varepsilon_{\pi-\alpha})]$$

$$a_{2}(\phi_{0}) = \frac{1}{2} [(\varepsilon_{\alpha} - \varepsilon_{\pi+\alpha}) - (\varepsilon_{-\alpha} - \varepsilon_{\pi-\alpha})]$$

$$\phi_{0} : X 線入射ビームの方位をサンプル面に投影したとき x 軸と成す角$$

式(3.2.1-11)に式(3.2.1-9)、(3.2.1-10)を代入すると、 φ₀ = 0のとき次式となる。

式(3.2.1-12)の右辺に含まれる応力成分や、 ϕ_0 、 ν 、E、 η はいずれも定数として扱うことができるので、 a_1 および a_2 はそれぞれ $\cos \alpha$ 、 $\sin \alpha$ に関して直線的な関係となる。そして、各直線の傾きは以下のように表される。

$$\begin{aligned} \frac{\partial a_1(0)}{\partial cos\alpha} &= -\frac{1+\nu}{E} [(\sigma_x - \sigma_z)sin2\psi_0 + 2\tau_{xz}cos2\psi_0]sin2\eta\\ \frac{\partial a_2(0)}{\partial sin\alpha} &= \frac{2(1+\nu)}{E} [\tau_{xz}sin\psi_0 + \tau_{xz}cos\psi_0]sin2\eta \end{aligned}$$

$$\vec{\mathfrak{X}}(3.2, 1-13)$$

次に、入射 X 線を試料法線方向から y 軸方向に傾斜させてデバイリングを測定すると(ϕ_0 = 90°)、式(3.2.1-12)の左辺は、それぞれ、 $a_1(90)$ および $a_2(90)$ となり、次式の関係が得られる。

$$\frac{\partial a_1(90)}{\partial cos\alpha} = -\frac{1+\nu}{E} [(\sigma_y - \sigma_z)sin2\psi_0 + 2\tau_{yz}cos2\psi_0]sin2\eta$$

$$\frac{\partial a_2(90)}{\partial sin\alpha} = \frac{2(1+\nu)}{E} [\tau_{xy}sin\psi_0 + \tau_{xz}cos\psi_0]sin2\eta$$

なお、平面応力測定のときは、応力成分が次式のようになる。

$$\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{12} & \sigma_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $\Re(3.2.1-15)$

よって、式(3.2.1-10)のひずみ ε αは次式のようになる。

$$\varepsilon_{\alpha} = \frac{\sigma_{x}}{E} [\omega_{31}^{2} - \nu(\omega_{32}^{2} + \omega_{33}^{2})] + \frac{\sigma_{y}}{E} [\omega_{32}^{2} - \nu(\omega_{33}^{2} + \omega_{31}^{2})] \\ + \tau_{xy} \frac{2(1+\nu)}{E} \omega_{31} \omega_{32}$$

また、 $\phi_0 = 0$ のとき、式(3.2.1-16)より式(3.2.1-11)の a_1 および a_2 は次のようになる。

$$a_{1}(0) = -\frac{1+\nu}{E}\sigma_{x}sin2\psi_{0}sin2\eta cos\alpha$$

$$\exists a_{2}(0) = \frac{2(1+\nu)}{E}\tau_{xy}sin\psi_{0}sin2\eta sin\alpha$$

式(3.2.1-17)より、 $a_1(0)$ および $a_2(0)$ はそれぞれ $\cos \alpha$ 、 $\sin \alpha$ に関して直線的な関係となり、それぞれの直線の傾きは次式のようにそれぞれ1個の応力成分を含む。

$$\begin{aligned} \frac{\partial a_1(0)}{\partial cos\alpha} &= -\frac{1+\nu}{E} \sigma_x sin 2\psi_0 sin 2\eta \\ \frac{\partial a_2(0)}{\partial sin\alpha} &= \frac{2(1+\nu)}{E} \tau_{xy} sin \psi_0 sin 2\eta \end{aligned}$$

$$\vec{\mathfrak{X}} (3. 2. 1-18)$$

よって、測定により式(3.2.1-17)のそれぞれに対する直線の傾きを決定できれば、次式から 応力 σ_x および τ_{xy} を決定することができる。(ただし、 $\phi_0 \neq 0$)

$$\sigma_{x} = -\frac{E}{1+\nu} \frac{1}{\sin 2\psi_{0}} \frac{1}{\sin 2\eta} \left(\frac{\partial a_{1}(0)}{\partial \cos \alpha} \right)$$

$$\tau_{xy} = \frac{E}{2(1+\nu)} \frac{1}{\sin \psi_{0}} \frac{1}{\sin 2\eta} \left(\frac{\partial a_{2}(0)}{\partial \sin \alpha} \right)$$

$$\vec{x}(3, 2, 1-19)$$

このように、 $\cos \alpha$ 法では1個のデバイリングから $\sigma_x \ge \tau_{xy}$ が同時に得られる特長がある。 一方、入射 X 線を試料法線方向から y 軸方向に傾斜させて同様にデバイリングを測定す ると、 $a_1(90) \ge \cos \alpha$ はこれまでと同様に直線的な関係となり、その傾きは次式のようにな る。

この直線の傾きには応力 σ_y が含まれ、これを利用することで次式のように σ_y を得ること ができる。(ただし、 $\phi_0 \neq 0$)

(2) 本プロジェクトで開発した小型 X線回折装置の基本構造

本プロジェクトで開発した新 X 線技術に基づく小型 X 線回折装置は、以下の主要部分から構成されている。

- ① X線発生部(X線管球、高圧電源)
- X線検出器(IP)
- IP 読み取り部
- ④ データ処理・制御部

以上のように、新X線技術ではX線検出器として二次元X線検出器を用いる点が大きな 特徴の一つであり、従来のX線応力測定装置で用いられてきたゴニオメータを不要にでき ることの他に幾つかの重要な特長がある。また、X線検出器としてイメージングプレート(IP) を用いると、検出感度が高いため従来技術に比べて弱いX線を使用することができ、その結 果、①のX線発生部を小型化することが可能になる。また、③のIP読み取り部を小型化す ることで測定装置本体に一体化することが可能になる。図 3.2.1-5 に本プロジェクトで開 発するX線回折装置の基本構成図および試作段階の装置内部写真を示す。

(a) 装置の基本構造

(b) 試作機の内部写真

図 3.2.1-5 本プロジェクトで開発した小型 X 線回折装置の構成

(3)本プロジェクトによる開発機について

平成 24 年度と平成 25 年度において、装置の主要部となる X 線発生部および X 線検出部 の小型化や性能向上について検討し、平成 26 年度に図 3.2.1-6 に示す装置を完成させた。 本開発機を用いてオーステナイト系ステンレス鋼(SUS316L)の溶接残留応力を測定した結 果、図 3.2.1-7 に示す回折環が測定された (Mn-Kα 特性 X 線を照射し、311 回折線を測定)。

図 3.2.1-6 本プロジェクトの開発機の外観写真

図 3.2.1-7 オーステナイト系ステンレス鋼(SUS316L)の溶接残留応力測定で得られた回折 環(Mn-Kα特性X線を照射し、311回折線を測定,ポイント測定による)

測定された回折環は、回折強度に斑が見られ、これは回折に与る結晶や回折面が不足したため十分な回折線が発生しなかったためと考えられる。このような回折環画像に対して X 線応力を求めようとすると、図 3.2.1-3 に示した回折環画像処理における回折環ピーク位置の決定において誤差が発生し、式(3.2.1-2)におけるひずみ決定の精度が悪くなるため、十分な応力測定精度を確保することが困難となる。

(a) 試料平面揺動機構を敷設した装置本体部

(b) 試料平面揺動機構の概要図図 3.2.1-8 「試料平面揺動機構」の説明図

上記の対策として、次に、本プロジェクトでは回折環上の回折強度のばらつきを改善する ため「試料平面揺動機構」を開発して導入した(図3.2.1-8参照)。本機構は、応力解析理 論やX線光学系上において支障を全く生じない状態で回折環の状態を改善できるものであ り、新X線技術の大きな特徴である。また、従来技術では実現が極めて困難でもある。本機 構は、X線測定中に測定試料の表面に平衡を保ちながらX線照射位置を直線的又は曲線的に 移動させるものである。こうすることで、X線照射面積が増加でき、回折X線を増やすこと ができるため、回折環の強度が均一にできる。本機構による回折環の改善例を図3.2.1-9に 示す。X線照射面積の増加に伴い、回折環画像が滑らかになっていく傾向が確認できる。

(a) X 線照射距離: 20 mm

(b) X 線照射距離: 40 mm

図 3.2.1-9 「試料平面揺動機構」の適用による回折環の変化(オーステナイト系ステン レス鋼(SUS316L)の溶接残留応力測定。Mn-Kα特性X線を照射し、311回折線を測定。)

(b) X線照射面積を種々変更したときの cos a 法による残留応力の信頼限界の変化

図 3.2.1-10 「試料平面揺動機構」の適用による X 線照射面積と測定された応力値の関係 (オーステナイト系ステンレス鋼(SUS316L)の溶接残留応力測定。Mn-K α 特 性 X 線を照射し、311 回折線を測定。)

図 3.2.1-10 は、X 線照射面積の増加による X 線測定された応力値および応力の測定誤差を 図示した結果である。図より、応力値はグラフの左端の試料平面揺動を行わなかった場合 (ポイント測定)では数 10 MPa小さい値を示し、試料平面揺動後ではほぼ一定の応力値を 示していることが分かる。また、同図(b)の応力の誤差に関しては、X 線照射面積の増加に よって応力の標準偏差が漸減していき、30 mm²程度付近からほぼ一定値を示していること が分かる。以上から、回折環上の回折強度にばらつきが生じた場合には試料平面揺動法を適 用して回折環を滑らかにすることで応力測定精度が改善できることが判明した。

(4) 改良機について

開発機において実現した試料平面揺動機構は、平坦な表面を持つ測定試料を対象にする ものである。一方、本プロジェクトでは、配管溶接試験体の残留応力測定を実現するため、 測定面に曲率がある場合にも精度よく測定できる新機構を開発した。図3.2.1-11に測定面 に曲率がある場合の試料揺動機構の概要を示す。また、本プロジェクトで開発が実現した試 料面に凹凸が存在する場合に対する揺動機構を搭載した改良機を図3.2.1-12に示す。

図 3.2.1-11 試料面に凹凸が存在する場合に対する揺動機構の概念図

図 3.2.1-12 試料面に凹凸が存在する場合に対する揺動機構を搭載した改良機

図 3.2.1-13 に、改良機を用いて、図 3.2.1-12 の左に示した配管溶接試験体の残留応力測 定を行った結果を示す(Mn-Kα線使用)。測定の詳細については 3.3 節で詳述されるのでこ こでは省略するが、Cr-Kβ線と cosα法を用いてポイント測定した結果に比べてばらつき の少ない残留応力分布が得られていることが判明する。

(5) 塑性ひずみの評価

本プロジェクトでは、残留応力測定の他に塑性ひずみの評価についても検討した。回折 X線プロフィルの半価幅が塑性ひずみと相関を有することは古くから知られていたが、従 来法では半価幅と塑性ひずみとの間の相関性にばらつきが見られ、実用の障害となってい た。これに対して本プロジェクトでは、回折環全体を二次元計測して利用することで測定 精度の改善を試みた。本プロジェクトでは、一度の測定により 500 個の半価幅を得ること ができるため大幅な繰り返し再現性の向上が見込まれる。本プロジェクトによる半価幅の データ解析方法の概要は、既出の図 3.2.1-3 に示したとおりである。

また、図 3.2.1-14 に示すように、塑性ひずみが異なると半価幅の変化とともに回折環 上の回折強度の分布状態が異なり、塑性ひずみが大きいほどより滑らかな回折環が得られ る。言い方を換えると、塑性ひずみが小さい場合には回折環が斑点状(スポッティ)にな り、従来技術のように回折環の1箇所のみを測る方法では回折強度の強い部分の場合や弱

X線応力測定を実施した箇所および試料揺動範囲に関する説明図

(a) 改良機による配管溶接試験体の残留応力測定結果 (Mn-K α 線使用) および Cr-K β 線 と cos α 法を用いてポイント測定した結果

図 3.2.1-13 試料面に凹凸が存在する場合に対する揺動機構を搭載した改良機による配管 溶接試験体の残留応力測定結果および Cr-K β 線と cos α 法を用いてポイント 測定した結果との比較

(a) 塑性ひずみ:0%

(b) 塑性ひずみ:10%

図 3.2.1-14 塑性ひずみが異なる材料から得られた回折環の比較 (SUS316L、電解研磨処理後、熱処理実施材)

い部分の場合が測定の度ごとに混在することになり、半価幅利用による塑性ひずみ評価法 のばらつきの原因となる。この点において、本プロジェクトの方法は回折環全体からの500 個の半価幅の平均値を用いるため大幅なばらつきの改善が期待できる可能性がある。この 可能性を検証するため、まず、ポイント測定により回折環全体の半価幅の平均値と試験片に 付与した塑性ひずみとの関係を調べた。得られた結果を図3.2.1-15に示す。同図より、新 X線技術による塑性ひずみとの相関性は従来技術と概ね同等であることと、また、新 X線技 術では塑性ひずみが1%以下の範囲においてややばらつきが見られる結果となった。この結 果から、回折環の斑点状が比較的顕著となる塑性ひずみ1%以下の範囲においては回折環全 周の平均化のみでは安定した評価が困難であることが判明した。そこで、応力測定用に本プ ロジェクトで開発した試料揺動機構を応用して測定ポイント数を増加してばらつきを改善 する方法についてさらに検討を行った。

図 3.2.1-15 塑性ひずみが異なる材料から得られた半価幅の変化 (ポイント測定の場合、SUS316L、電解研磨処理後、熱処理実施材)
図 3.2.1-16 に示すように、4行4列の合計16ポイントについて自動ポイント計測を実施 し、それらの全測定結果の平均値について検討した。図 3.2.1-17 に得られた結果を示す。 同図より、16ポイントの平均値は塑性ひずみが1%以下の範囲においても安定した相関関係 を示していることが確認できる。なお、図中のエラーバーは各16点の測定値の最大と最小 の範囲を示している。両者の際は塑性ひずみが1%以下において増加するが、その平均値は 安定した傾向を保持することが判明する。以上の結果より、新X線技術によって回折環から 得られる500個の半価幅を求め、これをさらに周囲16点について求めて平均化することで 塑性ひずみのX線評価が可能になると結論できる。

図 3.2.1-16 塑性ひずみを付与した試験片に対するマッピング測定箇所の説明図

図 3.2.1-17 マッピング測定による 16 点から得られた半価幅の平均値と付与した塑性ひ ずみとの関係(SUS316L、電解研磨処理後、熱処理実施材)

(6)小型 X線回折装置開発のまとめ

本プロジェクトで開発した小型 X 線回折装置と従来技術を用いた市販機とを比較すると 以下のとおりである。

- 測定時間 10 倍高速(1点の測定当たり1分~2分)
- 2 装置の重量 15 倍軽量
 - (総重量 10 kg:測定部 4 kg、電源部:4 kg、制御部(PC):2 kg)
- ③ 装置の占有スペース:20倍省スペース
- ④ 応力の繰り返し測定精度 5倍良好(誤差:1.2 MPa~5.8 MPa)

なお、④のX線回折法による応力測定精度は、装置によってのみ決まるのではなく、被 測定材料の結晶状態(結晶粒径、転位密度等)に起因した回折データの発生状態にも依存 する。上記の④の評価結果は市販の応力試験片を用いた評価試験によって得られた結果で あり、他の測定材料によっては結晶状態に存して結果が異なってくることに注意する必要 がある。

3.2.2 計測精度確保のためのX線応力測定理論の改良

本プロジェクトでは平らによる写真フィルム方式による新しい X 線応力測定法である、 いわゆる、cos a 法[参考文献(1)]、を改良した[参考文献(2)]。その概略については、本プ ロジェクトの成果を理解する上で重要であると考えられるので本節で要点についてまとめ ておくことにする。

(1) cos *α* 法の概要

 $\cos \alpha$ 法の光学系の配置図を図 3.2.2-1 に示す。すなわち、試料表面の法線方向から角度 ϕ_0 だけ傾けて X 線を入射し、回折環画像(図 3.2.2-2)を得る。試料が無ひずみの場合は図 の実線のように、回折環画像は真円になることが判明している。一方、試料に巨視的なひず みが存在する場合、回折環は破線のように中心がずれたり、円形で無くなったりする。この 変形を定量的に評価することで試料のひずみ、さらに、応力を測定する方法として提案され たのが $\cos \alpha$ 法[参考文献(1)]である。なお実際に $\cos \alpha$ 法を適用する場合には回折環の中 心角 α での半径(図の r(α))を回折環上のひずみ ϵ (α)に変換してから応力計算を行う。

図 3.2.2-1 cos a 法の光学系の概要図

図 3.2.2-3 cos α 法の回折環評価

図 3.2.2-3 は cos α 法の回折環評価の概念である。 cos α 法では回折環を四分割し $\epsilon(\alpha)$ 、 $\epsilon(\pi+\alpha)$ 、 $\epsilon(-\alpha)$ 、および $\epsilon(\pi-\alpha)$ という対称な四点の回折データを一組として取り 扱う。平らの研究[[参考文献(1)]およびその後の佐々木らの研究[参考文献(3)]によれば

$$\widetilde{\varepsilon_{\alpha}} = \frac{1}{2} \left[\left(\left(\varepsilon(\alpha) - \varepsilon(\pi + \alpha) \right) + \left(\varepsilon(-\alpha) - \varepsilon(\pi - \alpha) \right) \right) \right]$$

$$\overrightarrow{\mathfrak{K}} (3. 2. 2-2)$$

$$E_1 = \frac{1}{2} \left[\left(\left(\varepsilon(\alpha) - \varepsilon(\pi + \alpha) \right) + \left(\varepsilon(-\alpha) - \varepsilon(\pi - \alpha) \right) \right) \right]$$

$$\vec{\mathfrak{X}} (3. 2. 2-3)$$

$$E_{2} = \frac{1}{2} \left[\left(\left(\varepsilon(\alpha) - \varepsilon(\pi + \alpha) \right) + \left(\varepsilon(-\alpha) - \varepsilon(\pi - \alpha) \right) \right) \right]$$

$$\overrightarrow{x} (3. 2. 2-4)$$

という4 つの関数を α (0 $\leq \alpha \leq \pi/2$)について計算し、それぞれ cos α 、sin α 、cos 2α 、 および sin 2α についてプロットする (それぞれ、 cos α 線図、 sin α 線図、 cos 2α 線図、 sin 2α 線図) と、それらの直線の傾きから試料の全平面応力成分 (σ_x , σ_y , τ_{xy})が得られ る。これが cos α 法の基本である。

(2) フーリエ級数による回折環の解析法(フーリエ解析法)

本プロジェクトでは従来の $\cos \alpha$ 法に替えて $\epsilon(\alpha)$ をフーリエ級数で解析する方法を提唱した(以後、便宜的に「フーリエ解析法」と呼ぶ)。[参考文献(2)]によれば試料が平面応力状態にある場合、 $\epsilon(\alpha)$ は

というフーリエ級数で表わされ、X 線入射方向の応力 σ_xは式(3.2.2-5)の係数 a₁を用いて

$$\sigma_x = -\frac{2E}{1+\nu \sin 2\eta \sin 2\psi_0} \cdot a_1$$
 $\vec{x} (3. 2. 2-6)$

のように求められる。ただし ϕ_0 は X 線入射角で、 η は X 線回折角 θ_0 の余角($\theta_0 + \eta = 90^\circ$)である。従って試料の応力は回折環から $\epsilon(\alpha)$ を求め、それを式(3.2.2-5)のように フーリエ級数展開することで求めることができる。

以上を具体的に[参考文献(2)]の例で説明する。図 3.2.2-4 は[参考文献(2)]の Fig.5 を 転載したものであるが、炭素鋼 SK65 の試験材に約 100 MPa の応力を負荷して X 線回折環を 測定し、その $\epsilon(\alpha)$ を求めたものである(上図点線。図では $\epsilon(\alpha)$ の代りに ϵ_{α} と記している)。この測定値を式(3.2.2-5)のフーリエ級数で近似すると各係数が表 3.2.2-1 のように求まる(応力に関係のない a₀は省略)。また、従来法である sin² ϕ 法による測定から

$$\frac{E}{1+\nu} = 191 \text{ (GPa)}$$
 式 (3. 2. 2-7)

が得られており、無ひずみ状態の X 線回折角 2 θ = 157.08° (2 η = 22.92°) と合わせ て式(3.2.2-6)に代入すると

 $\sigma_x = 115 \,(\text{MPa})$

式(3.2.2-8)

のように応力を計算することができる。

図 3.2.2-4 SK65 材の ε(α)の例(約 100 MPa の応力を負荷している。上図の点線が実測 値で破線がフーリエ級数による近似。下図は測定値と近似値の差を示している。 [参考文献(2)]のFig.5より転載。)

表 3.2.2-1 図 3.2.2-4 のフーリエ係数。[参考文献(2)]の Table 4 より抜粋

a_1 b_1		a_2	b_2	
-1.10×10^{-4}	-6.27×10^{-5}	3.54×10^{-6}	8.79×10^{-6}	

試料に様々な応力を負荷しながら X 線で測定した応力と比較したのが図 3.2.2-5 である ([参考文献(2)]の Fig.6 を転載)。この図の横軸は機械的に負荷した応力(ひずみゲージで 測定)で、縦軸が X 線により測定した応力である。X 線測定は各点 10 回ずつ行い、平均と 標準偏差を求めている。また X 線応力は $\cos \alpha$ 法とフーリエ解析法の両方でデータ解析を 行っている。図から明らかなように、 $\cos \alpha$ 法とフーリエ解析法との結果は一致し、機械的 に負荷した応力 σ_{app} との関係は

 $\sigma_{\rm x} = 0.92\sigma_{\rm app} + 34$ (MPa)

式(3.2.2-9)

と比較的良好な比例関係が得られている。

図 3.2.2-5 SK65 材に四点曲げ試験を行って負荷応力(横軸)とX線で求めた応力(縦軸)を 比較した図(X線応力は cos α 法とフーリエ解析法を比較している。[参考文献 (2)]のFig.6より転載。)

(3) 本プロジェクトでの測定理論改良の成果

以上のように本プロジェクトで提案したフーリエ解析法では従来の cos α 法とほぼ同様 の測定結果が得られることが確認できた。それでは cos α 法、あるいはそれ以外の従来法と 比較してどのようなメリットがあるのであろうか。本節では、cos α 法以外の従来法、およ び cos α 法と比較した場合の特長や利点について述べる。

①従来法(sin² ψ法)との比較

まず従来法 (sin² ψ 法) に対して、cos α 法およびフーリエ解析法の持つ利点を列挙する。

- 1. 応力の測定に必要な X 線照射回数が少ない(約1/10)
- 測定器の構造が簡単で小型になり(重量で1/10~1/20)、これまで困難とされてきた現場でのX線応力測定が容易になる
- 3. 応力測定時間が短縮される(約1/10)

1. については後の「従来方式との比較」の項で詳しく説明するが、 $\cos \alpha$ 法では X 線回折 環全周の情報を利用するため、回折環上の一点、あるいは一部のみを利用する従来方式と比 較して利用できるデータ量が多くなる (360~500 倍)。そのため、試料の平面応力成分 (σ_x , σ_y , τ_{xy}) は、適用する応力解析原理に依存するが 1 回または 2 回の X 線照射で完全に測定 することができる。また三軸応力成分 σ_x , σ_y , σ_z , τ_{xy} , τ_{xz} , τ_{yz} でも同様に適用する応力解 析原理に依存するが 2 回または 3 回の X 線照射で完全に測定することができる。一方、従 来方式では $\sin^2 \phi$ 法の場合、平面応力の測定で 10 回程度、三軸応力の測定で 30 回程度の X 線照射が最低でも必要になる。

2.は、1.のX線照射回数が少なくて済むことによって生じる効果である。従来方式で多数 回のX線照射を行う場合、X線の入射角を精密に管理しなければ測定の精度が大きく落ちて しまう。従って、従来方式の装置では精密なゴニオメータによってX線管とX線検出器の 配置を正確に制御する必要があった。それには精密な機械を必要とし、気軽に現場に持ちだ して測定するような利用は困難であった。一方、cos α法ではX線入射の回数が少ないため、 X線管とX線検出器の配置さえ厳密に管理されていれば大きな測定誤差は生じない。すなわ ち、ゴニオメータによってX線管とX線検出器の配置を正確に制御する必要が不要にでき る。そのため測定装置に大掛かりな機械構造(ゴニオメータ)を必要とせず、また現場で手 軽に測定を行うことが容易にできる。

3. の測定時間の短縮も 1. によって生じる効果である。X 線の照射回数が少なくて済むため、測定の所要時間を短縮できる。多数の箇所の測定を行うような場合には、自動ステージ用いて測定を PC 制御することも容易にできるため非常に大きな時間短縮効果を生む。

②cos α 法との比較

次に cos α 法と比較した場合のフーリエ解析法の利点について述べる。cos α 法では図 3.2.2-3 のように常に回折環上の4点を一組としてデータ処理を行う。一方、これらの点は 回折環上では対称な位置にあるものの、試料中では特別に関係があるわけではない。そのた め、図 3.2.2-6 のように何らかの理由で4点の内1点の値がずれた場合には、全く関係の ない他の正常な3点のデータが無駄になるか、あるいは誤差が生じてしまう。一方、フーリ エ解析法では値の大きくずれている点を除いてフーリエ級数に展開すれば応力を求めるこ とができ、他の3点を有効に使用することができる。そのため、後述するように cos α 法が 適用不可能な、一部が欠けているような回折環からも正確な応力を求めることができる。

また、回折環を工学的に広く利用されているフーリエ級数で表現するため、一般的なフー リエ解析の手法をそのまま適用することが可能になり、今後、さまざまな展開が可能になる と期待できる。

図 3.2.2-6 cos α 法では誤差の生じる場合の一例

3.2.3 本プロジェクトでのX線応力測定法(新X線技術)の研究成果

以上、前年度までのX線応力測定法に関する本プロジェクトの成果を簡単にまとめたが、 cos a 法にフーリエ級数を利用して拡張し、測定理論を分かり易くしたのが最大の成果であ ると言える。以下では測定理論の見通しの良さを利用して行った、X線応力測定法の拡張に ついて述べる。なお、その主要な成果は、回折環が欠けている場合と結晶粒が粗大な場合へ の対応である。

(1)結晶粒が粗大な場合の測定

実際の試料で測定を行うと、図 3.2.2-4 のような滑らかな $\epsilon(\alpha)$ が得られることは稀で ある。主にこれは、試料の結晶粒が粗大であることによる。本プロジェクトではフーリエ解 析の考え方を用いて、結晶粒が粗大な場合の $\epsilon(\alpha)$ について考察を行った。ここでは[参考 文献(4)]に沿ってその議論を説明する。

図 3.2.3-1 に、粗大結晶粒がある場合の回折環のモデルを示す。この例では α = 35°方 向に大きな回折強度を示す粗大粒を想定している。粗大粒により回折環の一部が円形で無 くなっている。この回折環モデルから $\epsilon(\alpha)$ を計算したのが図 3.2.3-2 である。全体とし ては式(3.2.2-5)に従う滑らかなコサインカーブ状であるが、 α = 35°の部分にデルタ関 数的な特異点がある。この特異点を含んだまま、図の $\epsilon(\alpha)$ のフーリエ係数から応力を求 めると(または、cos α 法を適用すると)、大きな誤差を生じる(図の例では σ_x に 6%の誤差 が生じる)。

図 3.2.3-2 図 3.2.3-1 の回折環モデルから計算した ε(α) ([参考文献(4)] の Fig.3 より抜粋。)

以上のモデルを一般化すると、次のように考えることができる。粗大粒の影響によって式 (3.2.2-5)の $\epsilon(\alpha)$ は

のように表される。ここで $\delta \epsilon(\alpha)$ が粗大粒による効果(図 3.2.3-1 や図 3.2.3-2 の出っ張 り部分)を表している。この $\delta \epsilon(\alpha)$ は局所的(試料表面での X 線入射位置や X 線入射角が 変わると全く違う値になる) であると考えられるので、後述するように試料を平面揺動し て面積平均を取ったり、あるいは、X 線入射角を角度搖動して角度平均を取ると

のように0に収束していくと考えられる。ただし、AはX線照射面積、あるいはX線入射 角である。

また式(3.2.3-1)を用いると、測定結果がどれだけ理想的な条件に近いか評価することが できる。式(3.2.2-5)を一般化して

$$\varepsilon(\alpha) = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\alpha + b_k \sin k\alpha)$$

式(3.2.3-3)

と表すと、 $\epsilon(\alpha)$ のパワースペクトルE(k)は

$$E(k) = a_k^2 + b_k^2 \qquad \qquad \vec{x} (3. 2. 3-4)$$

で求められる。測定結果が理想的な場合、k \geq 3の項は存在しないので E(k) = 0 (k \geq 3) になるはずである。実際には測定誤差や試料の結晶粒同士の境界でのミクロな応力などの 効果により k \geq 3の範囲でも E(k)は完全にゼロにはならないが、式(3.2.3-4)のパワース ペクトルを用いることにより測定データの良し悪しを定量的に評価することができる。

①平面揺動(マッピング)

cos α 法で粗大粒のある試料の応力を測定する場合、実用性のある有効な対策は佐々木ら が提案し実証した、いわゆる、「試料平面揺動」である(例えば[参考文献(5)])。これに対し て、本プロジェクトでは試料平面揺動をフーリエ解析法により拡張した([参考文献(4)])。 本節ではその概略を説明する。

図 3.2.3-3 は試料平面揺動法の概念図である。X 線入射角はそのままに、X 線あるいは試料)を平行移動することで X 線回折に関わる結晶の数を増やし、式(3.2.3-2)の収束を実現する。実際には試料表面の7 mm×7 mmの領域を図 3.2.3-4 のように 2 mm 間隔で 16 点マッ ピングし、各点で回折環像を得た。測定装置の X 線ビーム径は約1 mm であり、各測定点に はオーバーラップは無い。

Specimen

図 3.2.3-3 平面揺動の概念図([参考文献(4)]の Fig. 17 より抜粋。)

図 3.2.3-4 X線照射点のマッピング([参考文献(4)]のFig.6を転載。)

図 3.2.3-5 実証に使用した JIS-S40C 材の組織写真([参考文献(4)]の Fig.5 を転載。)

図 3.2.3-6 試料から測定された回折環の一例 (平面揺動無し、[参考文献(4)]のFig.7を転載。)

[参考文献(4)]で平面揺動の有効性を示すために使用した試料は、炭素鋼の JIS-S40C 材である。組織写真を図 3.2.3-5 に示すが、結晶粒径は 10 μm 程度であった。

図 3.2.3-6 は、試料から測定された回折環の一例である (平面揺動無し、r-K α 線、 α Fe211 回折)。図 3.2.3-7 は試料に約 160 MPa の負荷をかけて、図 3.2.3-4 の点「1」で X 線回折環 を測定し、 ϵ (α)に変換したものである。破線は 16 点平均から求めた式(3.2.3-5)のモデ ルである(後述)。図の実測データ(実線) とモデル(破線) を比較すると、実測データでは 非常に複雑な凹凸が見られる。これは粗大な結晶粒による効果であると考えられる。またこ の凹凸は図 3.2.3-4 の異なる測定点では全く異なる形状を示しており([参考文献(4)])、複 数の測定点で測定された ϵ (α)の平均を取ると、式(3.2.3-2)の収束が実現できると考えら れる。

実際に図 3.2.3-4 に示す 16 点で測定された $\epsilon(\alpha)$ の平均を取ったのが図 3.2.3-8 である。平均を取ると図 3.2.3-7 の場合と比較して滑らかになっているのが分かる。さらにこの $\epsilon(\alpha)$ を式(3.2.2-5)のモデルで近似したのが図の破線で、式(3.2.2-5)のフーリエ級数で 測定結果をよく近似できていることが分かる。

この平面揺動(マッピング測定 + ε(α)の平均)が粗大粒の場合の応力測定に効果的であることを示したのが図 3.2.3-9 および図 3.2.3-10 である。どちらの図も試料に四点曲げ試験を行いながら、各測定点で X 線的な応力を測定した結果である。図 3.2.3-9 では各点ご

図 3.2.3-7 点1で測定された ε'(α)(約 160 MPa の応力を負荷した状態で測定。 破線は式(3.2.2-5)のモデル。[参考文献(4)]の Fig.9 より抜粋。)

図 3.2.3-8 16 点で測定された ε'(α)の平均(約 160 MPa の応力を負荷した状態で測 定。破線は式(3.2.2-5)のモデル。[参考文献(4)]の Fig. 10 より抜粋。)

図 3.2.3-9 図 3.2.3-4 の各測定点で四点曲げ負荷試験を行いながら X 線で応力を求めた 結果([参考文献(4)]の Fig. 14 より転載)

図 3.2.3-10 図 3.2.3-4 の各測定点で四点曲げ負荷試験を行いながら X 線で応力を求めた 結果(X 線による応力は各点で測定した ε(α)を平均し、式(3.2.3-5)の近似 係数から計算した。[参考文献(4)]の Fig. 15 より転載。)

とに求めた X 線的応力の測定結果を示している。図 3.2.3-7 のような $\epsilon(\alpha)$ の凹凸がある ため、応力の測定値には最大で 100 MPa 程度のばらつきがある。また横軸の機械的負荷に対 する縦軸の X 線応力の傾きにもばらつきが見られる。

一方、各点で測定した ε(α)の平均を取ってから X 線的応力を求めた図 3.2.3-10 では、 横軸の機械的負荷に対する縦軸の X 線的応力の傾きはほぼ 1 となり、X 線により正しく応力 が測定できているのが分かる。また図中に*印で示された sin² φ 法の測定結果ともほぼ同様 の結果が得られており、従来法と整合が取れていることが言える。

最後に、式(3.2.3-4)で求めた ε (α)のパワースペクトラム E(k)を示す(図 3.2.3-11)。 図では単独の測定点の場合(実線)と4点(n = 4)および16点(n = 16)平均の値を示してい る。主要な応力成分に対応するのはk = 1の場合であるが(k = 2に対応する σ_y および τ_{xy} の成分は、この実験ではk = 1の成分と比較して小さい)、nを増加させていくとk \ge 3の 成分が大きく減少していることが分かる(この図では縦軸が対数で表わされていることに 注意されたい)。これは ε (α)の平均を取っていくことにより式(3.2.3-1)の $\delta \varepsilon$ (α)の効 果が小さくなっていくことに対応する。従って図 3.2.3-11のような ε (α)のパワースペク トラム E(k)から、測定した回折環の良し悪しや、試料平面揺動を行う場合にどの程度の面 積を揺動すれば充分かを評価することが可能になる。

図 3.2.3-11 式(3.2.3-4)による ε(α)のパワースペクトラム E(k) (横軸は k で縦軸が E(k)。単独の測定点での値(n = 1)と、4 点、16 点平均。[参考文献(4)]の Fig.12 を転載。)

②X 線入射角摇動

従来のX線応力測定法では結晶粒が粗大な場合、X線の入射角を搖動するのが有効であった(図3.2.3-12)。これは従来のX線応力測定法ではX線入射角を何通りかに変化させながら測定するため、測定装置を改造すること無く実現できたためである。本プロジェクトではX線応力測定装置用のX線入射角揺動装置を新開発し、実際の試料での測定に適用して評価を行った[参考文献(6)]。以下ではその概要を述べる。

図 3.2.3-12 X線入射角揺動の概念図([参考文献(4)]のFig.17より抜粋。)

X 線入射角揺動では X 線照射中に図 3.2.2-1 の ϕ_0 を変化させ、回折に寄与する結晶粒の 数を増加させる。ここで注意しなければならないのは式(3.2.2-6)のように、回折環のフー リエ係数から応力を計算する際に sin ϕ_0 の項が入ってくることである。いま $\phi = \phi_0$ を中 心に± δ 、すなわち $\phi = \phi_0 - \delta$ から $\phi = \phi_0 + \delta$ まで入射角を揺動することを考える。 この場合、 ϕ の平均は

 $\overline{\psi} = \psi_0$

であるが 1/ sin φ の平均

 $\overline{\frac{1}{\sin\psi}} = \frac{1}{2\delta} \int_{\psi_0 - \delta}^{\psi_0 + \delta} \frac{1}{\sin\psi} d\psi$

は一般的には1/sin φ₀とは一致しない。そこで[参考文献(6)]はδが小さい場合について、

X線入射角揺動を行った場合の回折環のフーリエ係数 ā, に対して

のように式(3.2.2-6)を修正した。δ = 5°、10°の場合の補正量はそれぞれ 0.5%、2%程度である。

[参考文献(6)]では、試料平面揺動の検証に利用したのと同じ JIS-S40C 材で検証を行った。試料の組織写真は図 3.2.3-6 の通りである。

実際に測定された ϵ (α)の例を図 3.2.3-13 と図 3.2.3-14 に示す。図 3.2.3-13 は X 線入 射角揺動を行わなかった場合の例で、図 3.2.3-7 とほぼ同じ条件での測定になる。図の破線 は X 線入射角揺動をかけた場合の式(3.2.2-5)による近似である。また図 3.2.3-14 は±10° の X 線入射角揺動をかけた場合の ϵ (α)で、揺動無しの場合と比較して凹凸が減少してい ることが分かる。

試料平面揺動の場合と同様に $ε(\alpha)$ のパワースペクトラム E(k)を求めたのが図 3.2.3-15 である。実線が試料平面揺動無しの場合で、 $\delta = 5$ が±5°の X 線入射角揺動を、 $\delta = 10$ が±10°の X 線入射角揺動をかけた場合である。試料平面揺動の場合(図 3.2.3-11)と同様、 揺動をかけることによって E(k)の k \ge 3の成分が減少し、 $ε(\alpha)$ の関数形が式(3.2.2-5) の理想的なものに近づいているのが分かる。

また、試料に四点曲げ応力を負荷して、±10°のX線入射角揺動をかけた回折環からX線 的応力を求めた結果を図3.2.3-16に示す。図の横軸は機械的に負荷した応力で、縦軸がX 線的に求めた応力を示している。図から明らかなように機械的応力とX線的応力の比例係 数はほぼ1となり、X線入射角揺動により応力が正しく測定されていることが分かる。なお、 X線入射角揺動をかけない場合には、測定値に図3.2.3-9で示した程度のばらつきが生じ る。

③試料平面揺動とX線入射角揺動の比較

以上述べたように、結晶粒が粗大な場合でも試料平面揺動、あるいは X 線入射角揺動を利 用することで X 線的な応力測定の精度を改善することができる。どちらの方法を利用する かは測定状況に応じて、測定の容易な方を選択すべきである。また実用的にはどの程度の面 積の試料平面揺動を行うと、どの程度の角度の X 線入射角揺動と等価な結果が得られるか、 という比較があると有用であるが、それについては今後の課題である。

図 3.2.3-13 X線入射角揺動無しで測定された ε(α)(約 160 MPa の応力を負荷した状態 で測定。破線は式(3.2.2-5)のモデル。[参考文献(6)]の Fig.6 を転載。)

図 3.2.3-14 ±10°の X 線入射角揺動で測定された ε(α)(約 160 MPa の応力を負荷した 状態で測定。破線は式(3.2.2-5)のモデル。[参考文献(6)]の Fig.8 を転載。)

図 3.2.3-15 式(3.2.3-4) による ε(α)のパワースペクトラム E(k) (横軸は k で縦軸が E(k)。単独の測定点での値(n = 1)と、4 点、16 点平均。 [参考文献(6)]の Fig.9 を転載。)

図 3.2.3-16 四点曲げ負荷試験を行いながら X 線で応力を求めた結果 (X 線による応力は±10°の X 線入射角揺動をかけ、式(3.2.3-5)を 利用して計算した。[参考文献(6)]の Fig. 11 より転載。)

(2) 欠けた回折環の解析

配管の内側や溝の底、角部などの狭い部分の応力測定が必要な場合がある。しかし X 線応 力測定では X 線回折を利用するため、回折環の一部が欠けてしまって、うまく測定できない ことが多い。一方、回折環をフーリエ級数の形で記述できることを利用すれば回折環の一部 が欠けている場合でも応力を測定することができる。本プロジェクトではその手法を提案 したので、[参考文献(7),(8)]に従ってその概略を述べる。

式(3.2.2-5) で $\cos \alpha \in X_1$ 、 $\sin \alpha \in X_2$ 、 $\cos 2\alpha \in X_3$ 、 $\sin 2\alpha \in X_4$ のように置き換えると

 $\begin{aligned} \varepsilon(\alpha) &= a_0 + a_1 \cos \alpha + b_1 \sin \alpha + a_2 \cos 2\alpha + b_2 \sin 2\alpha \\ &= a_0 + a_1 X_1 + b_1 X_2 + a_2 X_3 + b_2 X_4 \end{aligned}$ $\ensuremath{\vec{x}}(3.\ 2.\ 3-6)$

のように表すことができる。また回折環のデータを中心角(α_1 , α_2 , α_3 , · · · α_n)のn 点で測定するものとし、それに対応する X₁, X₂, X₃, X₄ をそれぞれ(X₁₁, X₂₁, X₃₁, · · · X_{n1})、 (X₁₂, X₂₂, X₃₂, · · · X_{n2})、(X₁₃, X₂₃, X₃₃, · · · X_{n3})、(X₁₄, X₂₄, X₃₄, · · · X_{n4}) とする。 これらを式(3.2.3-6)に代入して行列表記すると

$$\begin{pmatrix} 1 & X_{11} & X_{12} & X_{13} & X_{14} \\ 1 & X_{21} & X_{22} & X_{23} & X_{24} \\ 1 & X_{31} & X_{32} & X_{33} & X_{34} \\ \vdots \\ 1 & X_{n1} & X_{n2} & X_{n3} & X_{n4} \end{pmatrix} \begin{pmatrix} a_0 \\ a_0 \\ a_0 \\ a_0 \\ a_0 \end{pmatrix} = \begin{pmatrix} \varepsilon(a_1) \\ \varepsilon(a_2) \\ \varepsilon(a_3) \\ \vdots \\ \varepsilon(a_n) \end{pmatrix}$$

$$\vec{\mathfrak{K}} (3. 2. 3-7)$$

と表される。ここで

$$M \equiv \begin{pmatrix} 1 & X_{11} & X_{12} & X_{13} & X_{14} \\ 1 & X_{21} & X_{22} & X_{23} & X_{24} \\ 1 & X_{31} & X_{32} & X_{33} & X_{34} \\ \vdots \\ 1 & X_{n1} & X_{n2} & X_{n3} & X_{n4} \end{pmatrix}, \quad x \equiv \begin{pmatrix} a_0 \\ a_0 \\ a_0 \\ a_0 \\ a_0 \end{pmatrix}, \quad \varepsilon \equiv \begin{pmatrix} \varepsilon(a_1) \\ \varepsilon(a_2) \\ \varepsilon(a_3) \\ \vdots \\ \varepsilon(a_n) \end{pmatrix}$$

とすると式(3.2.3-7)は

と表される。式(3.2.3-8)はMの一般逆行列M[†]を用いると

$x = M^{\dagger} \varepsilon$	式(3.2.3-9)

のように解くことができる。ここで x は、a₀, a₁, b₁, a₂, b₂の各係数を並べたものであった から、結局、式(3.2.3-6)の係数を決定したことになる。cos α 法、あるいはフーリエ解析 法は a₀, a₁, b₁, a₂, b₂の各係数から応力を求める方法であったから、式(3.2.3-9)により試 料の応力が決定されることになる。また式(3.2.3-9)は最小二乗法により式(3.2.3-6)の係 数を決定する方法と数学的に等価である。

式(3.2.3-6)を数学的に考えると、5次元空間中の超平面の方程式を決定することに相当 する。実は回折環の全周のデータが無くても平面を決定することは可能で、回折環の一部が 欠けている場合でも式(3.2.3-9)の解は存在する。 [参考文献(7)]では、実際に一部が欠け た回折環のデータから応力が決定できることを実証した。

図 3.2.3-17 は鋼の応力試験片の回折環を、X 線検出器の前に X 線遮蔽用のフィルターを 置くことで一部遮り、一部が欠けた回折環を模擬したものである。本プロジェクトではこの 回折環データに式(3.2.3-9)の計算法を適用し、X 線的に応力を求めた。図 3.2.3-18 は、図 3.2.3-17 の回折環像から求めた $\varepsilon(\alpha)$ と、その式(3.2.3-9)による近似(破線)を示してい る。なお、 $\varepsilon(\alpha)$ の値が一部で大きく変化しているのは装置のデータ取得上の問題で、実際 のデータ処理の際には除去している。図から明らかなように、近似結果は $\varepsilon(\alpha)$ とよく一 致している。

図 3.2.3-17 一部が掛けた回折環の模擬データ([参考文献(6)]の Fig.1 を転載。)

図 3.2.3-18 の近似から応力を求めたのが表 3.2.3-1 である。この表の左列は図 3.2.3-17 のデータ名で、右列が本プロジェクトの方式による計算値を示している。また同時に cos α 法でも応力を計算し、中央列に記した (N. A.は計算不能を意味している)。最下段は測定に 使用した応力試験片に対するメーカーによる定格値で、-441 ± 35 MPa である。

表から明らかなように、本プロジェクトの方式で求めた応力は全ての場合について、定格 値と誤差の範囲で一致した。一方、cosα法では全く応力値を求められないケース(Type A およびType B)があった。このように、本プロジェクトの方式により従来の cosα法では 測定が困難だった、回折環の一部が欠けている場合でも測定が可能になり、複雑な形状の構 造物の測定で力を発揮することが期待される。

Type C

Type D

図 3.2.3-18 一部が欠けた回折環の ε(α)と本プロジェクトの方式による近似(破線) ([参考文献(6)]の Fig.3 を転載。)

表 3.2.3-1 一部が欠けた回折環から求めた応力値(左列はデータ図 3.2.3-17 参照)。中央 列が cos α 法による値(N. A. は計算不能の意)で右列が本プロジェクトの方式による値。 また最下段は応力試験片のメーカーによる定格値。 [参考文献(6)] Table 3 転載。)

	σ_x (MPa)			
	$\cos \alpha$ technique	Proposed technique		
No mask	-445 ± 6	-442 ± 4		
Type A	<i>N. A.</i>	-456 ± 9		
Type B	N. A.	-450 ± 7		
Type C	-444 ± 7	-461 ± 6		
Type D	-574 ± 49	-484 ± 13		
Specification	-443 ± 35			

表 3.2.3-1 一部が欠けた回折環から求めた応力値(左列はデータ名(図 3.2.3-17 参 照)。中央列が cos α 法による値(N. A. は計算不能の意)

(3) 従来方式 (sin² ψ法, 2D 法) との比較

以上では、本プロジェクトのX線的応力測定方式の原理や、粗大結晶粒への対応、回折環 の一部が欠けている場合の応力測定法について述べた。このように様々な場合で応力を測 定できることは示せたが、実際のユーザーにとって興味が有るのは、測定装置が市販されて いる他の方法との比較である。本プロジェクトでは歴史のある sin² 4 法、Bruker より装置 の市販されている 2D 法[参考文献(9)]と本プロジェクトの方式の比較をX線応力測定法の 基礎方程式[参考文献(10)]に基づいて行ったので、その概略を紹介する。

①diffraction vector によるX線応力測定法の比較

図 3.2.3-19 は X 線応力測定の基本図である。(S₁, S₂, S₃)は試料表面を基準とした座 標系で、入射 X 線と回折 X 線の中線方向の単位ベクトルを unit diffraction vector (以下 diffraction vector)n と呼ぶ。図のように n は単位ベクトルなので、試料法線方向からの 傾き ϕ と、回転方向 ϕ で記述することができ、一般に sin² ϕ </sup> 法ではこの(ϕ , ϕ) 表記で 測定の角度設定を行う。

以下では、種々の X 線応力測定法を比較するために、(ϕ , ϕ) を図 3.2.3-20 に示す極 点図上に表示する。極点図の中心は試料表面の法線方向(ϕ = 0) に対応し、極点図の外周 が diffraction vector が横倒しになった状態を表す。

図 3. 2. 3-21 は sin² ϕ 法で、($\phi = 0$, $\phi = 45^{\circ}$)に相当する測定を行った場合の diffraction vector の極点図を示す。sin² ϕ 法では1回の測定で回折環上の1点だけを測定するため、

図 3.2.3-20 極点図の定義 (角度はラジアン。[参考文献(10)]の Fig.2 より抜粋。)

図 3.2.3-21 $\sin^2 \phi$ 法で($\phi = 0$, $\phi = 45^\circ$) に相当する測定を行った場合の diffraction vector の極点図([参考文献(10)]のFig.2より抜粋。)

極点図表示では1点だけ表示される。しかし、1点だけでは応力を求めることはできないため、何点かの測定を組み合わせて測定を行うことになる。

一方回折環全体のデータを取得する cos α 法および本プロジェクトの方式では、一回の 測定による diffraction vector の極点図は図 3.2.3-22 のようになる。このように多数の データを取得するため、一回の測定で全平面応力の測定が可能になるというのが X 線応力 測定の歴史における cos α 法の独自性である。

また 2D 法[参考文献(9)]の場合の一回の X 線入射による diffraction vector は、図 3.2.3-23 の通りである。図 3.2.3-22 の本プロジェクトの方式と比較すると、一部(約 1/8) のデータしか取得しないため、一度の測定で平面応力成分全てを求めることは難しい。しか し、図 3.2.3-21 の $\sin^2 \phi$ 法と比較するとデータ点が多いため、少ない X 線照射回数で同 等の測定、あるいは同程度の X 線照射回数でより高精度の測定を行うことができる。

図 3.2.3-22 cos α 法および本プロジェクトの方式での一回の X 線入射による diffraction vector の極点図([参考文献(10)]の Fig.4 より抜粋。)

図 3.2.3-23 2D 法での一回の X 線入射による diffraction vector の極点図 ([参考文献(10)]の Fig.4 より抜粋。)

②三軸応力測定における比較

さらに、 [参考文献(10)]では各 X 線応力測定法による三軸応力測定について検討し、数 値的に測定誤差の比較を行った。図 3.2.3-24 は $\sin^2 \phi$ 法による三軸応力測定の diffraction vector の極点図の例で、 $\phi = 0^\circ$ 45°、 0° 、 $\phi = 0^\circ$ 、 ±18°、 ±26°、 ±33°、±39°、 ±45°の組み合わせで31 回測定を行うケースを想定している。同様に、 図 3.2.3-25 は2D 法による三軸応力測定の diffraction vector の極点図の例を示してい る。この極点図では、[参考文献(11)]を参考にしたが、全部で33 回の X 線照射を想定して いる。詳細な角度の設定については、[参考文献(8)]を参照されたい。

図 3.2.3-24 sin² φ 法による三軸応力測定の diffraction vector の極点図の例 ([参考文献(10)]の Fig.5 より抜粋。)

図 3.2.3-25 2D 法による三軸応力測定の diffraction vector の極点図の例 ([参考文献(10)]の Fig.5 より抜粋。)

測定点の数は $\sin^2 \phi$ 法と 2D 法でほぼ同じであるが、0 次元の X 線検出器を用いる $\sin^2 \phi$ 法では1 点の測定に複数回の X 線照射を行うため、測定時間が大幅に異なることに注意が必要である。

図 3.2.3-26~28 は、 $\cos \alpha$ 法および本プロジェクトの提案方式による三軸応力測定の diffraction vector の極点図の例である。図 3.2.3-26 (以降、[参考文献(10)]にならって "Type B" と呼ぶ)、および、図 3.2.3-27 (以降、"Type C"と呼ぶ)は[参考文献(12)] で提案された測定方式で、それぞれ4回および3回のX線照射により三軸応力成分全てを 測定する。注目すべき点は、先に述べた $\sin^2 \phi$ 法や 2D 法と比較して必要なX線照射の回数 が格段に少ないことである。これは $\cos \alpha$ 法および本プロジェクトの提案方式では回折環 の全体のデータを活用しているため、回折環の一部(約1/8)しか利用しない 2D 法と比較す るとX線照射の回数が約1/8 で済むためである。

図 3.2.3-28(以降"Type D"と呼ぶ)は、[参考文献(10)]で初めて提案した三軸応力測定 法で、3回のX線照射で測定を行う点は"Type C"と同様であるが、回折環が極点図上で 等間隔で並んでいるため測定精度の改善が期待される。

以上のような diffraction vector の組([参考文献(10)]では "Constellation" と呼んで いる)による X 線応力測定は、式(3.2.3-8)のように数式で記述することができる。試料の 応力は、その解として式(3.2.3-9)より求められる。この解析法は sin² ϕ 法については[参 考文献(13)]で提案されていたが、cos α 法については本プロジェクトで初めて適用を提案 した[参考文献(8), (10)]。測定した ϵ (α)の誤差が相互に独立で一定値 $\delta \epsilon$ を持つと仮 定すると、測定時の統計誤差を推定することができる([参考文献(14)]の式(32)、および、 [参考文献(10)]の式(14))。[参考文献(10)]では図 3.2.3-24~28 の各測定法について誤差 を見積もり、比較した(表 3.2.3-2)。

なお、この表の誤差の見積もりにあたっては、 $\delta \epsilon = 10^{-4}$ 、回折環上のデータを 5°間隔 でサンプル(合計 72 点を測定) し、フェライトの測定を仮定した。その他の詳細について は[参考文献(10)]を参照されたい。

表 3.2.3-2 各 X 線応力測定法の測定誤差の見積もり ($\delta \epsilon = 10^{-4}$ と、回折環上の測定点数を 72 と仮定。「参考文献(10)]の Table 4 から抜粋。)

	Estimated errors (MPa)					
	$\delta\sigma_{11}$	$\delta\sigma_{22}$	$\delta\sigma_{33}$	$\delta\sigma_{12}$	$\delta\sigma_{13}$	$\delta\sigma_{23}$
$\sin^2\psi$ 法(図 30)	36.6	36.6	15.4	26.0	7.0	7.0
2D法(図31)	5.6	5.6	2.8	3.6	2.0	2.0
cos a 法						
Type B (図 32)	6.2	6.2	3.1	5.9	1.8	1.8
Type C (図 33)	15.7	15.7	8.3	9.4	5.8	5.8
Type D (図 34)	8.2	8.2	3.6	6.0	3.3	3.3

表 3.2.3-2 では、三軸応力成分の表記を原論文に従って σ_{11} … σ_{23} と表記してある。 また、それらの各成分の誤差を $\delta \sigma_{11}$ … $\delta \sigma_{23}$ で表している(単位は MPa)。同表から明ら かなように、データ量の一番少ない $\sin^2 \phi$ 法(測定数は 31 回)の誤差が最も多い。また、X 線照射回数が 33 回の 2D 法が最も誤差が小さい。 $\cos \alpha$ 法の中では X 線を 4 回照射する Type B の精度が最も良く、2D 法とほぼ同程度であるが、X 線照射回数が 3 回で済む Type D も全 ての成分の誤差が 10 MPa 以内に収まっており、測定時間との兼ね合いでは最も魅力的な測 定法であるといえる。

以上のように数値計算上は本プロジェクトの提案方式は、従来法と比較してはるかに短 時間(X線照射回数が少ない)でsin²φ法よりも高い精度が得られる見通しが立った。なお、 今後は実際の測定でこの見積もりを検証する必要がある。

図 3.2.3-26 cos α 法による三軸応力測定の diffraction vector の極点図の例(Type B) ([参考文献(10)]の Fig.6 より抜粋。)

図 3.2.3-27 cos α 法による三軸応力測定の diffraction vector の極点図の例(Type C) ([参考文献(10)] の Fig.6 より抜粋。)

図 3.2.3-28 cos α 法による三軸応力測定の diffraction vector の極点図の例(Type D) ([参考文献(10)]の Fig.6 より抜粋。)

(4) オーステナイト系ステンレスでの評価

以上の X 線応力測定の検討は、測定の容易さなどを考慮して炭素鋼を中心として進めた ものである。しかし、他の材料の場合でも測定原理は同じであり、比較的軽微な変更で測定 が可能になると考えられる。以下では本プロジェクトの目的の一つであるオーステナイト 系ステンレスの X 線的応力測定について、プロジェクトの成果の一つである[参考文献(15)] に沿って説明する。

材質	特性X線	$2\theta_0$	回折面	$1/2S_2$	応力
		(°)	plane	(MPa ⁻¹)	(MPa)
Type 304SS	Mn-Ka	152.8	(311)	7.18×10^{-6}	-619 ± 35
Type 316L	Mn-Ka	152.8	(311)	7.179×10^{-6}	-780 ± 35

表 3.2.3-3 評価に用いた試験片の詳細([参考文献(15)]の Table 1 より転載。)

オーステナイト系ステンレスの評価を始めるに当たり、プロトー社製の応力試験片(Type 304SS および Type 316L)を用いた。試験片の詳細は表 3.2.3-3の通りである。表の最右列の「応力」は製造者によって提供された値で、sin²φ 法で測定されていると推測される。ま

た推奨される特性 X 線は Mn-K α である。本研究では比較のため、Type 304 および 316 の粉 末の測定も行った。

①Cr-Kβ による測定

試料の応力の定格値は Mn-K α 線による測定を前提としているが、最初にフェライトと同 じセットアップで測定可能な Cr-K α による評価を行った。

図 3.2.3-29 は Cr-K β によって得られた回折環像の例で、それぞれ(a): Type 304 の粉 末、(b): Type 316 の粉末、(c): Type 304SS の応力試験片、および(d): Type 316L の応力 試験片となっている。また X 線の照射時間はどれも 120 秒である。(a)、(b)の粉末では比較 的良好な回折環像が得られているが、(c)および(d)の応力試験片では S/N 比の悪い回折環 像となっている。

これらの回折環像から求めた $\epsilon(\alpha)$ の例を図 3.2.3-30 に示す。図の実線は Type 304 の 応力試験片から求めた破線は、粉末から求めた $\epsilon(\alpha)$ を表す。粉末で測定された $\epsilon(\alpha)$ は 比較的滑らかであるが、応力試験片の結果は非常に凹凸が多く、精度の高い測定は期待でき ない。

②Mn-Kαによる測定

次に Mn-K α による測定結果を示す。図 3.2.3-31 は Mn-K α によって得られた回折環像の 例で、それぞれ(a): Type 304 の粉末、(b): Type 316 の粉末、(c): Type 304SS の応力試 験片、および(d) Type 316L の応力試験片となっている。X 線の照射時間はどれも 30 秒で ある。X 線の照射時間が Cr-K α の 1/4 であるにもかかわらず、いずれも図 3.2.3-39 より良 好な S/N 比の回折環像が得られている。これより ϵ (α)の S/N も改善され、図 3.2.3-32(実 線は Type 304 の応力試験片、破線は粉末による) に示すように、応力試験片からも比較的 滑らかな ϵ (α)が得られている。

③各測定結果のまとめ

表 3.2.3-4 は応力試験片の σ_x の測定結果のまとめである。左から 2 列目の定格値は表 3.2.3-3 による。また sin² ϕ 法(Cr-K β)による測定値を左から 3 列目に示している。本プ ロジェクトの方法(ϵ (α)のフーリエ解析による結果) は左から 4 列目と 5 列目で、それぞ れ Cr-K β および Mn-K α による結果を表している。フーリエ解析法では計 10 回ずつ測定を 行ない、その平均値と標準偏差を求めた。ただし 10 回測定を行っても、所要時間は sin² ϕ 法より短かった(Cr-K β の場合、2×10(β))。cos α 法の測定結果はフーリエ解析法とほぼ 同じなので割愛した。

表 3.2.3-4 から明らかなように、測定値のばらつきはフーリエ解析法と Mn-K α の組み合わせが最も小さい。またその組み合わせによる測定値は誤差の範囲で定格値と一致しており、測定時間が短いことも合わせてオーステナイト系ステンレスの応力測定には Mn-K α に

よるフーリエ解析法が有望であると言える。

現在はフェライト(炭素鋼)の場合と同様に、市販されているステンレス材を試料として加 工し、四点曲げ試験で応力を負荷しながらX線応力測定を行っている。必要に応じて揺動を 加え、測定精度の改善を図ることも可能である。

表 3.2.3-4 応力試験片の σ_xの測定値(MPa)([参考文献(6)]の Table 4 を転載。)

		$sin^2 \psi$ 法	本プロジェクトの方法	
	定格	Cr-Kβ	Mn-Ka	Cr-Kβ
Type 304SS	-619 ± 35	-650 ± 70	-630 ± 21	-690 ± 55
Type 316L	-780 ± 35	-690 ± 110	-740 ± 28	-780 ± 70

図 3.2.3-29 Cr-Kβ による回折環の測定例 (a) Type 304の粉末 (b) Type 316の粉末 (c) Type 304SS の応力試験片 (d) Type 316L の応力試験片 ([参考文献(15)]の Fig.5 を転載。)

図 3.2.3-30 Cr-K β による Type 304 の ε(α)の例(実線が応力試験片を、破線が粉末を 測定したもの。[参考文献(6)]の Fig.4 より抜粋。)

図 3.2.3-31 Mn-Kα による回折環の測定例 (a) Type 304の粉末 (b) Type 316の粉末 (c) Type 304SSの応力試験片 (d) Type 316Lの応力試験片 ([参考文献(15)]のFig.3を転載。)

図 3.2.3-32 Mn-Kα による Type 304の ε(α)の例(実線が応力試験片を、破線が粉末を 測定したもの。[参考文献(6)]の Fig.4 より抜粋。)

(5) フェライト系鋼での評価

異材継手溶接部ではフェライト系の鋼材に対する X 線応力測定も必要になる。そこで、 ここではフェライト系の鋼材の一種である S45C の受け入れ材について cos α 法および本 プロジェクトで新開発したフーリエ法による X 線応力測定結果について説明する。

本研究で用いた試験片は形状が 130×20×3 mm の市販の一般構造用炭素鋼(S45C)の受入 材である。なお、試験片表面には加工変質層の影響を取り除くため約 150 µ m 電解研磨を 施した。無負荷時での残留応力値は 0 MPa であった。試験片断面の顕微鏡組織写真を図 3.2.3-33(a)に示す。また、比較のため、図 3.2.3-33 (b)に[参考文献(2)]の実験で用いら れた SK65 の顕微鏡組織写真を示す。両者の結晶粒径を比較すると、S45C の結晶粒径が約 30~ 40 µ m 程度であるのに対し、SK65 の結晶粒径は 10 µ m 以下であり、S45C の結晶粒径 が SK65 に比べ約 3~4 倍大きいことがわかる。表 3.2.3-5 に S45C および SK65 の化学成分 を示す。通常、鋼材では炭素量が 0.77%で組織がパーライトのみの共析鋼となるが、SK65 の炭素量は 0.70%であるため、SK65 の方が S45C よりもパーライトを多く有すると推察さ れる。

(a) S45C

(b) $SK65^{4)}$

図 3.2.3-33 一般構造用炭素鋼鋼材 (S45C) および炭素工具鋼鋼材 (SK65)の金属組織写真

	С	Si	Mn	Р	S
S45C	0. 42~0. 48	0. 15~0. 35	0.60~0.90	≦0.030	≦ 0.035
SK65	0.60~0.70	0. 10~0. 35	0.10~0.50	≦0.030	≦ 0.035

表3.2.3-5 試験片の化学成分(wt%)

図3.2.3-34および図3.2.3-35に、X線測定により得られた回折環画像および回折環上の4 種類の中心角($\alpha = 0^{\circ}$, 90°, 180°, 270°)に対する回折プロファイルの一例をそれぞ れ示す。これらより、均一な回折環が得られていることがわかる。そのため、X線応力測定 に十分な回折データが得られていると思われる。測定により得られる ε_{α} からのcos α 法に よる応力決定は[参考文献(1)]の通りである。すなわち、無応力状態の時、回折環は真円に なる。 ε_{α} は、測定された回折環の真円からの差により決定される。表3.2.3-6に図3.2.3-34 の回折環から求められた ε_{α} を、高速フーリエ変換(FFT)して得られた式(3.2.3-1)のk \leq 4の 場合の係数を示す。また、図3.2.3-36および図3.2.3-37にcos α 法およびフーリエ解析法か ら得られたcos α 線図、cos 2 α 線図、sin α 線図およびsin 2 α 線図を示す。各図中の破線は、 cos α 法より得られた値の近似直線である。 cos α 法より得られた値の近似直線とフーリエ 解析法による近似値は、ほぼ完全に一致した。そのため、cos α 法とフーリエ解析法の測定 精度は同程度であると思われる。

図 3.2.3-34 一般構造用炭素鋼(S45C)の受入材試験片から得られた回折環 (負荷応力:117 MPa)

図 3.2.3-35 一般構造用炭素鋼(S45C)の受入材試験片から得られた回折環半径方向に対 する回折プロフィル(負荷応力:117 MPa)

表3.2.3-6	測定された格子ひずみ ε αから算出されたフーリエ係数
	(負荷応力:117 MPa)

k	Coefficient of cos		Coef	ficient of sin
0	a ₀	1.671×10 ⁻⁷		
1	a_1	-5.020×10^{-5}	b ₁	-2.443×10 ⁻⁵
2	a_2	7.639×10 ⁻⁵	b_2	-1.197×10^{-5}
3	a_3	6.331×10 ⁻⁵	b ₃	-7.044×10 ⁻⁵
4	a_4	-8.772×10^{-5}	b ₄	-5.650×10^{-5}

(b) $\varepsilon_{a_2} - \cos 2\alpha$ diagram

図3.2.3-36 cos α 法およびフーリエ解析法から得られたcos α 線図およびcos2 α 線図

(d) $\varepsilon_{b_2} - \sin 2\alpha$ diagram

図3.2.3-37 cos α 法およびフーリエ解析法から得られたsin α 線図およびsin2 α 線図

図3.2.3-38 (a)に、測定により得られた ε_{α} および ε_{α} のフーリエ級数展開による近似値 を示す。近似には表3.2.3-6のk \leq 2の係数を用いた。測定された ε_{α} と ε_{α} のフーリエ級数 展開による近似値は概ね同様の傾向を示した。しかし、完全には一致せず、図3.2.3-38 (b) に示すように大きな誤差も見られた。[参考文献(2)]による実験では測定された ε_{α} と ε_{α} の フーリエ級数展開による近似値がほぼ完全に一致している。本研究で用いたS45C材の結晶 粒径は、[参考文献(1)]による実験で用いられたSK65材の結晶粒径よりも約3~4倍大きい。 一方、本実験でのX線照射面積は約3 mm²であり、X線照射面積に対し試験片の結晶粒径が比 較的大きいため、本実験の測定結果はその影響を受けていると思われる。そのため、測定さ れた ε_{α} と ε_{α} のフーリエ級数展開による近似値が完全に一致しなかったと考えられる。な お、結晶粒の大きさや炭素量が測定に与える影響については今後系統的な検討が必要と思 われる。

図3.2.3-39に四点曲げ負荷試験時のX線応力測定の結果を示す。横軸がひずみゲージ法に より得られた負荷応力、縦軸がX線応力測定による応力である。ひずみゲージ法での機械的 弾性定数はJISより205GPaを用いた。四点曲げ負荷試験時のX線応力測定により、フーリエ解 析法とcosα法の結果が傾きで100%、切片で98%一致した。すなわち、S45C材についても[参 考文献(1)]による実験と同様の結果が得られた。以上のことから、S45C材でもフーリエ解析 法の測定精度はcosα法と同程度であることが判明した。

(b) ε (α)の測定値およびフーリエ級数近似との残差

図3.2.3-38 フーリエ級数近似の結果

図 3.2.3-39 四点曲げ試験による X 線応力測定精度の検証結果

3.2.4 新X線技術の開発に関するまとめ

本プロジェクトでは、X線応力測定を原子力施設で適用できるようにすることを目的とし て開発を進めた。このため、従来技術とは異なる二次元 X線検出器を採用した新しい X線 回折装置の実現について検討した。その結果、二次元 X線検出器としてイメージングプレー ト(IP)を採用し、措置の大幅な小型軽量化と測定の高速化を実現した。本プロジェクトによ る開発機と従来技術による市販機との比較は以下のとおりである。

- 測定速度(応力):1分~2分、従来比約1/10
- ・装置の重量 : 10 kg、従来比約 1/15
- ・装置の占有スペース:幅50 cm×高さ50 cm×奥行き50 cm、従来比約1/20

以上のように、従来比で10倍から20倍の小型軽量化と測定速度の高速化を達成した。

次に、測定精度の向上に関しても本プロジェクトでは検討を行い、①データ数の増加、及 び、②新データ解析理論の適用、の2方面からの改善を試みた。まず、①に関しては二次元 X線検出器の適用により、回折環全体が一度に計測できるようになり、大幅な回折データ数 の増加が可能になった。従来技術における回折データ数と比較すると以下のとおりである。

・普及型のシンチレーションカウンター(Scintillation Counter: SC)を使用する従来機 との比較:

50000 倍 (ただし、140° $\leq 2\theta \leq 170$ °の範囲を 0.3° おきに計測する場合) ・高速型の位置敏感型比例計数管 (PSPC)を使用する従来機との比較:

500倍

すなわち、シンチレーションカウンターを用いる場合には、1 個の回折プロフィルを得る ためには X 線照射位置を中心とする円弧状について 100 点程度のポイントを計測する必要 がなる(ただし、140°≦2θ≦170°の範囲を 0.3°おきに計測する場合)。これに対して、 本プロジェクトの開発機では一度の測定によって 500 個の回折プロフィルが得られるので、 従来機に対しては 500000 倍のデータ量となる。次に、位置敏感型比例計数管を用いる場合 には一度に 1 個の回折プロフィルが得られるが、これは本プロジェクトと比較すると 1/500 である。以上のように、二次元 X 線検出器の適用は回折データの収集において従来機に比べ て圧倒的な性能を有している。

一方、測定精度の向上に関しては、②のデータ解析理論の能力も重要である。本プロジェ クトでは上記のような二次元 X 線検出器によるデータ量の豊富さを有効利用するため、従 来技術用に開発された世界標準の応力解析理論「sin²φ法」に代えて、新たに「cosα法」 を適用した。また、cosα法は平面応力測定用に限定されるため、三軸応力測定にも適用可 能な「一般化 cosα法」を開発して適用可能とした。さらに、回折環の一部が不完全となる 場合にも有効に適用可能な「フーリエ解析法」を新開発して適用した。

以上のように、本プロジェクトでは、従来技術のX線応力測定装置を大幅に小型軽量化するとともに、測定時間を大幅に高速化することに成功し、さらに、一度に収集できるデータ数を大幅に増加可能とするとともに、それらのデータを有効に活用できる新データ解析理論を適用及び新開発して導入した。

以上に述べた本プロジェクトによる開発機は,主要なハード部及びソフト部共に日本独 自の技術を用いたものであり(ソフト部:データ解析論・cos a 法、一般化 cos a 法、フーリ エ解析法を指す、また、ハード部:二次元 X 線検出器イメージングプレート、小型 IP 読み 取り器)、また、現状では海外に類似する技術や装置は現れていない。すなわち、この分野 において、本プロジェクトの技術は世界をリードするものである。

参考文献

- (1)「細東X線応力測定の一方法とその疲労亀裂伝は問題への応用」,平修二,田中啓介, 山崎利春,材料,27,pp.251-256 (1978).
- (2) "X-ray stress measurement with two-dimensional detector based on Fourier analysis," T. Miyazaki, T. Sasaki, Int. J. Mater. Res., 105, pp. 922-927 (2014).
- (3) 「2 次元的 X 線検出器イメージングプレートを用いた全平面応力成分の単一入射 X 線応 力測定」, 佐々木敏彦, 広瀬幸雄, 材料, 44, pp. 1138-1143 (1995).
- (4) "Improvement in X-ray stress measurement using Debye-Scherrer ring by inplane averaging", T. Miyazaki, Y. Fujimoto, T. Sasaki, J. Appl. Cryst. (in press).
- (5) 「イメージングプレートを用いた粗大結晶粒材料の X 線マクロ応力測定」, 佐々木敏 彦, 広瀬幸雄, 安川昇一, 日本機械学会論文集(A 編), 63, pp. 533-541 (1997).
- (6) "Improvement of X-ray stress measurement from a Debye-Scherrer ring by oscillation of the X-ray incident angle," T. Miyazaki, Y. Maruyama, Y. Fujimoto, T. Sasaki, Powder Diffraction, 30, pp. 250-255 (2015).
- (7) "X-ray stress measurement from an imperfect Debye-Scherrer ring," T. Miyazaki,
 T. Sasaki, Int. J. Mater. Res., 106, pp. 237-241 (2015).
- (8) "Linearized analysis of X-ray stress measurement using the Debye-Scherrer ring," T. Miyazaki, T. Sasaki, Int. J. Mater. Res., 106, pp. 1002-1004 (2015).
- (9) "Introduction to two-dimensional X-ray diffraction," B. B. He, Powder Diffraction, 18, pp. 71-85 (2003).
- (10) "A comparison of X-ray stress measurement methods based on the fundamental equation", T. Miyazaki, T. Sasaki, J. Appl. Cryst. (in press).
- (11) "Optimizing the Conditions for Residual Stress Measurement Using a Two-Dimensional, XRD Method with Specimen Oscillation," O. Takakuwa, H. Soyama, Advances in Materials, Physics and Chemistry, 3, pp. 8-18 (2013).
- (12)「エリアディテクタ方式のX線三軸応力測定法の改良に関する研究」,佐々木敏彦,高橋俊一,佐々木勝成,小林裕一,日本機械学会論文集(A編),75, pp.219-227 (2009)
- (13) "Generalised Least-squares Determination of Triaxial Stress States by X-ray Diffraction and the Associated Errors," R. A. Winholtz, J. B. Cohen, Aust. J. Phys., 41, pp.189-199(1988).
- (14) "Are data correctly fitted by the $\sin^2 \phi$ and similar methods?," B. Ortner, Int. J. Mater. Res., 99, pp.933-941 (2008).
- (15) "X-ray residual stress measurement of austenitic stainless steel based on Fourier analysis", T. Miyazaki, T. Sasaki, Nuclear Technology (in press).

3.3 新超音波法と新X線計測技術の適用性の検証

3.3.1 模擬試験体の作製

新超音波法および新 X 線計測技術の原子力発電機器への適用性を検証するため、原子力発電機器の容器や配管の材料等を代表する複数種類の模擬試験体の仕様を決定した。そして、この結果に基づき平板形状および円筒形状を有する溶接模擬試験体とき裂付与模擬試験体を各々複数個作製するとともに、新 X 線計測技術で塑性ひずみ量を評価するため、塑性ひずみ量を変化させた試験片を複数個作製した。

模擬試験体の仕様の検討において、革新的原子力システムや現行の軽水炉で仕様されている材料、想定される損傷ならびに損傷が懸念される部位を調査した模擬試験体に必要な要件を検討整理した。表3.3.1-1 に代表的な革新的原子炉システム(ナトリウム冷却高速炉、ガス冷却炉および超臨界圧軽水炉)と軽水炉の使用材料、運転条件等を示す。使用材料は主に①フェライト系鋼 (炭素鋼、低合金鋼、2.25Cr-1Mo鋼、Cr系鋼等)、②オーステナイト系鋼(ステンレス鋼、ステンレス鋼鋳鋼、ニッケル基合金等)である。実機の構造物では、これらの材料を溶接して構築した溶接構造物になるため、構造物の健全性を評価において溶接部の健全性を評価することが重要な項目の一つとなる。溶接部の金属組織や組成は、母材と異なるものが多く母材と比較して機械的特性や耐食性等が劣ることが多い。また、溶接部には応力集中や引張応力が残留する可能性があり、強度に影響を及ぼす因子が多く存在する。さらに、溶接施工時に欠陥が発生する可能性があることに加え、供用中に損傷が生じる可能性もある。表3.3.1-2 は、代表的な革新的原子炉システムで想定される主な損傷や軽水炉で経験してきた主な損傷を示す。以上の検討整理を踏まえ、材料や運転条件等の視点から模擬試験体の材料とその組合せや損傷の仕様を検討した。

これらの検討を考慮して、形状や材料を組み合わせる上での分類を行った結果を表 3.3.1-3 に 示す。部位は前述のとおり溶接部を主とするが母材で代替できる場合も考慮し、溶接部と母材に 分類した。模擬試験体の材料とその組合せは、オーステナイト系鋼の同材継手とフェライト系鋼 の同材継手ならびにオーステナイト系鋼とフェライト系鋼の異材継手に分類した。また、模擬試 験体の形状は、容器を模擬した平板形状と配管を模擬した曲面に分類した。超音波法と新 X 線計 測技術ともに、材料の違いが計測精度に及ぼす影響が比較的大きいため、対象とする全ての材料 の組合せに適用する必要があると考えられる。形状は、超音波法では計測精度に影響を及ぼすた め平板状及び曲面状の両方を検討する必要があると考えられる。それに対して、X 線計測技術で は形状によって測定可否がわかれるものの、測定可能であれば形状が精度に影響を及ぼすことは 考えにくいため X 線計測技術は平板のみとした。X 線計測技術で残留応力や塑性ひずみを計測す る上で、素材の作製時や試験体作製時に加わるひずみ等の影響を受けることが考えられる。新 X 線計測技術の適用性を評価するためには、こうした外部要因の影響を分離して評価する必要があ る。そのため熱処理や表面処理の有無を模擬試験体の仕様に加えた。

以上の材料や形状等の検討結果に基づき、新超音波法および新 X 線計測技術の検証に用いる試 験体を作製した。表 3.3.1-4 に本プロジェクトで作製した溶接模擬試験体を、表 3.3.1-5 にき裂 付与模擬試験体を示す。溶接模擬試験体は、炭素鋼、オーステナイト系ステンレス鋼およびニッ ケル基合金から成り、新超音波法および新 X 線計測技術の検証に用いた。作製した溶接模擬試験 体の例として、図 3.3.1-1 と図 3.3.1-2 に H26 年度と H27 年度に作製した試験体の外観写真を示 す。また、表 3.3.1-5 に示すき裂付与模擬試験体は、オーステナイト系ステンレス鋼から成り、 新超音波法の検証に用いた。作製したき裂付与模擬試験体の例として、図 3.3.1-3 と図 3.3.1-4 に H27 年度に作製した試験体を示す。そして、表 3.3.1-6 に新 X 線計測技術による塑性ひずみの 評価試験片を示す。炭素鋼、オーステナイト系ステンレス鋼およびニッケル基合金を用いて、引 張試験機で単軸方向に塑性ひずみを付与した。

		···•••	, <u> </u>		
	ナトリウム冷却	ポット目に	超臨界圧	沸騰水型	加圧水型
	高速炉	刀入行动炉	軽水炉	軽水炉	軽水炉
原子炉容器 の材料	オーステナイト 系ステンレス鋼	2.25Cr-1Mo 系鋼	低合金鋼	低合金鋼	低合金鋼
配管の材料	クロム鋼	ニッケル基合 金	オーステナイ ト系ステンレ ス鋼、ニッケ ル基合金	炭素鋼、オー ステナイト系 ステンレス鋼	炭素鋼、オー ステナイト系 ステンレス 鋼、鋳鋼
使用温度℃ (ホットレグ/ コールドレグ	(550/395) (520/335) (500/240)	(900/395)	(500/280)	(290)	(320)
冷却材圧力 MPa	水系:約19	約4	約 25	約 7	約 13

表 3.3.1-1 代表的な革新的原子炉システムと現行軽水炉の材料、運転条件等

表 3.3.1-2 代表的な革新的原子炉システムと現行軽水炉に想定される損傷

	ナトリウム冷	ガマ公共に	超臨界圧	沸騰水型	加圧水型
	却高速炉		軽水炉	軽水炉	軽水炉
	疲労 <u>割れ</u>	疲労 <u>割れ</u>	疲労 <u>割れ</u>	疲労 <u>割れ</u>	疲労 <u>割れ</u>
忠定される主な	クリープ	クリープ	応力腐食 <u>割れ</u>	応力腐食 <u>割れ</u>	応力腐食 <u>割れ</u>
頂饧	(変形)	(変形)	(変形)	減肉、(変形)	減肉、(変形)

表 3.3.1-3 対象部位、形状、材料の分類

対象部位	形状	材料
・溶接部	・平板形状(容器の模擬)	 ・炭素鋼(低合金鋼)
・母材部	・曲面形状(配管の模擬、容器	・オーステナイト系ステンレス鋼
	と配管の継手の模擬)	・ニッケル基合金

作製年度	材質	形状・板厚	母材の溶接前 ひずみ除去熱処理	溶接方法	
H24	SUS316L/Y316L	平板・35 mm	あり	TIG 溶接	
H25	NCF600/Alloy82	平板・35 mm	なし	TIG 溶接	
H25	NCF600/Alloy82	平板・35 mm	あり	TIG 溶接	
H25	NCF600/Alloy82/SS400	平板・35 mm	なし	TIG 溶接	
H25	NCF600/Alloy82/SS400	平板・35 mm	あり	TIG 溶接	
1126	STDT410/TCS 50	四倍,20	あり	TIG 溶接	
H20	5111410/103-30	円同・30 mm	溶接後熱処理あり		
1126	STDT410/TCS 50	田倍,20 mm	あり	TIG 溶接	
П20	5111410/103-30	口同。2011111	溶接後熱処理なし		
H26	SUS316L/Y316L	円筒・30 mm	あり	TIG 溶接	
H26	STPT410/Alloy82/SUS316L	円筒・30 mm	あり	TIG 溶接	
	SM490A/Aloy82/SUS316L				
H27	SM490A ベベル角 15 °	平板・25 mm	なし	TIG 溶接	
	バタリングあり				
	SM490A/Aloy82/SUS316L				
H27	SM490A ベベル角 30 $^\circ$	平板・25 mm	なし	TIG 溶接	
	バタリングあり				

表 3.3.1-4 本プロジェクトで作製した溶接模擬試験体

表 3.3.1-5 本プロジェクトで作製したき裂付与模擬試験体

作製	++ / ///	心中 七回	次拉	き裂	き裂高さ	き裂長さ	表面
年度	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	形状・板厚	俗按	付与部	(mm)	(mm)	間隙
H24 SUS304	亚 振 •25 mm	721	日本本部	0	21	100μ m	
		ふし	山中小小山	9	21	未満	
<u>ш</u> 24	SUS204	亚框 • 25 mm	<i>t</i> 21		0	21.5	100~200
1124	303304		ふし	山中小小山	7	21.3	μ m
	SUS216I	平板・25 mm	あり	ちり 溶接部	6	約 14	100μ m
П23	505510L						未満
U25	SUS204	亚卡 . 25	たり	游坛如	6	約 16	100~200
1123	303304		<i>w</i>) •)	伯及即	0		μ m
H26	SUS304	平板・25 mm	なし	母材部	6	_	—
H26	SUS304	平板・25 mm	なし	母材部	6	_	_
H26	SUS304	平板・25 mm	なし	母材部	10	_	_
H26	SUS304	平板・25 mm	なし	母材部	10	—	—

H26	SUS316L/Y316L	瓦状・30 mm	あり	溶接金属	7.5	—	—
H26	SUS316L/Y316L	瓦状・30 mm	あり	溶接金属	15	—	—
H27	SUS316L/Y316L	瓦状・30 mm	あり	溶接金属	7.5	26	—
H27	SUS316L/Y316L	瓦状・30 mm	あり	溶接金属	15	39	—
	SM490A/Aloy82						
H27	/SUS316L,SM490A	平板・25 mm	あり	溶接金属	6~9	13	—
	ベベル角 15 °						
	SM490A/Aloy82						
H27	/SUS316L,SM490A	平板・25 mm	あり	溶接金属	6~9	17	—
	ベベル角 30°						

図 3.3.1-1 H26 年度に作製した円筒試験体 図 3.3.1-2 H27 年度に作製した平板試験体

作製年度	材質	寸法	熱処理	塑性ひずみ量(%)
H24	SS400		なし	0, 0.3, 0.5, 1, 3, 5, 10
H24	SS400		620 °C, 1 hr	0, 0.3, 0.5, 1, 3, 5, 10
H24	SUS304	板厚 8 mm,	なし	0, 0.3, 0.5, 1, 3, 5, 10
H24	SUS304	幅 30 mm,	900 °C, 2 hrs	0, 0.3, 0.5, 1, 3, 5, 10
H24	SUS316L	長さ 120 mm	なし	0, 0.3, 0.5, 1, 3, 5, 10
H24	SUS316L	(平行部)	900 °C, 2 hrs	0, 0.3, 0.5, 1, 3, 5, 10
H24	NCF600		なし	0, 0.3, 0.5, 1, 3, 5, 10
H24	NCF600		900 °C, 2 hrs	0, 0.3, 0.5, 1, 3, 5, 10

表 3.3.1-6 本プロジェクトで作製したき裂付与模擬試験体

図 3.3.1-3 H27 年度に作製した平板形状のき裂付与模擬試験体

図 3.3.1-4 H27 年度に作製した瓦状のき裂付与模擬試験体

新X線計測技術の適用性を検証するため、平成26年度に作製した円筒異材継手模擬試験体について、応力弛緩法による残留応力測定を行った。図3.3.1-5にひずみゲージ貼り付け後の試験体の外観写真と応力測定位置の模式図を示す。試験体は母材が炭素鋼(STPT410)とオーステナイト系ステンレス鋼(SUS316LTP)で、溶接金属がニッケル基合金(Alloy82)から成っており、肉厚30 nm,外径316 nm,長さ400 nmである。残留応力測定位置は溶接金属中央と溶接止端部から5,15,25,50,100 nmである。軸方向に幅20 nmで切断後、溶接部の幅100 nmの範囲について外表面を2 nm残して放電加工でスリットを付与し、残留応力を開放させた。図3.3.1-6に放電加工

スリットの付与範囲の概略図と試験片の外観写真を示す。なお、二軸ゲージを用いて溶接線方向 と溶接線直交方向の残留応力を測定し、表 3.3.1-7 に残留応力の算出に用いた材料物性値を示す。

図 3.3.1-5 ひずみゲージ貼り付け後の試験体の外観写真と応力測定位置の模式図

(a) 放電加工スリット付与部の概略図(一がスリット)

⁽b) スリット付与後の試験片

図 3.3.1-6 放電加工スリット付与部の概略図とスリット付与後の試験片の外観写真

材料	ヤング率 (GPa)	ポアソン比
STPT410	209	0.29
SUS316LTP	190	0.26
Alloy82	206	0.32

表 3.3.1-7 残留応力の算出に用いる材料物性値

図 3.3.1-7 に残留応力測定結果を示す。溶接線方向残留応力は、溶接金属中央部が 260 MPa で 最も高くなるが、溶接部から離れるのに伴い低下した。STPT410、SUS316LTP ともに同じ傾向を示 しし、ほぼ左右対称であった。

一方、溶接線直交方向残留応力は、溶接金属は-80 MPa で圧縮になった。これは余盛の影響もあると思われ、今後検証が必要である。そして、SUS316LTP と比較して STPT410 の残留応力が高くなった。これは、両材料の降伏応力の大きさや線膨張係数の違いによるものと推察される。

図 3.3.1-7 円筒異材継手模擬試験体の残留応力測定結果(応力弛緩法)

新超音波法の適用性の検証を行うため、作製した疲労き裂付与試験体の一部について切断を行い、疲労き裂の高さを測定した。表 3.3.1-8 にき裂高さを調査した試験体を示す。図 3.3.1-8 に 例として試験体番号 1809 と 2685 の切断イメージを示す。き裂付与表面において、き裂の端から 長さ中央部までを 2 mm ピッチで幅 15 mm の長さで切断し、断面観察によりき裂高さを測定した。 なお、切断した試験片はき裂の端から番号付けし、試験体番号 2685 であれば 2685-1, 2685-2,

…, 2685-7 とした。図 3.3.1-9 から図 3.3.1-13 に各き裂断面のマクロ観察結果を示す。また、表 3.3.1-9 に切断試験により得られたき裂高さやそれらの特徴のまとめ表を示す。

作製年度 番号	切断調査 年度	材料	試験体寸法	き裂長さ
H24 年度 番号:1809	H27	SUS304	板厚 35 mm,幅 150 mm, 長さ 250 mm	21 mm
H24 年度 番号:1810	H25, H26	SUS304	板厚 35 mm,幅 150 mm, 長さ 250 mm	21.5 mm
H26 年度 番号:2685	H27	SUS304	板厚 25 mm,幅 150 mm, 長さ 250 mm	27.2 mm
H26 年度 番号: PSS1	H27	母材,溶接金属 ともに SUS316L	板厚 30 mm,幅 80 mm, 長さ 400 mm(瓦状)	20 mm
H27 年度 番号:CS15	H27	母材:SM490A, SUS316L 溶接金属:82 合金	板厚 25 mm,幅 300 mm, 長さ 100 mm	13 mm

表 3.3.1-8 切断調査を行った疲労き裂付与試験体

図 3.3.1-8 試験体番号 1809 と 2685 のき裂の切断方法の例

(a) 1809-1

(b) 1809-2

(c) 1809-3
 (d) 1809-4
 図 3. 3. 1-9 試験体 1809 のき裂部の断面マクロ観察結果

(e)1809-5(f)1809-6図 3. 3. 1-9試験体 1809 のき裂部の断面マクロ観察結果 (続き)

図 3.3.1-10 試験体 18010 のき裂部の断面マクロ観察結果

図 3.3.1-11 試験体 2685 のき裂部の断面マクロ観察結果 (続き)

(b)PSS1-3

(a)CS15-1

(b)CS15-2

(c)CS15-3
 (d)CS15 図 3. 3. 1-13 試験体 CS15 のき裂部の断面マクロ観察結果

試験体番号	試験片番号	き裂高さ (mm)	最大き裂高さ (mm)	主な特徴	
1800	1809-1	4.4			
	1809-2	5.8		開口部から先端部 までほぼ直線状に 進展、先端部の開	
	1809-3	6.6	7 0		
1609	1809-4	7.0	1.2		
	1809-5	7.2		口幅は数 µ m	
	1809-6	7.1			
	中央部	9.4		途中の間隙が変	
1810	中央部から3mm	8.5	9.4	化、先端部の開口	
	中央部から 5 mm	9.3		幅は数 μ m	
	2685-1	4.8			
	2685-2	6.5		開口部から先端部 までほぼ直線状に 進展、先端部の開 口幅は数 µ m	
	2685-3	7.5			
2685	2685-4	8.4	9.4		
	2685-5	8.8			
	2685-6	9.1			
	2685-7	9.4			
	PSS1-1	3.1		溶接金属内、先端 部の開口幅は数 µ	
PSS1	PSS1-2	4.4			
	PSS1-3	5.0	5.4		
	PSS1-4	5.0		m	
	PSS1-5	5.4			
CS15	CS15-1	4.8		溶接金属内 先端	
	CS15-2	5.0	5.1	部の開口幅は数 µ m	
	CS15-3	5.1	J.1		
	CS15-4	4.8			

表 3.3.1-9 各疲労き裂付与試験体におけるき裂高さのまとめ

3.3.2 新超音波法の適用性の評価

新超音波法の適用性を検証するため、従来型の超音波法と新超音波法を用いて溶接模擬試験体、 異材継手模擬試験体とき裂付与模擬試験体の溶接部やき裂部を計測し、超音波の反射信号やき裂 寸法のデータを取得した。そして、切断調査により実測したき裂寸法と、従来型の超音波法と新 超音波法により測定したき裂の深さや長さの測定誤差を比較し、新超音波法の適用性を検証、評 価した。

(1) 測定方法·測定条件

①従来超音波法

従来型の超音波計測法によるデータ取得では、フェーズドアレイ法を用いた縦波斜角法および 横波斜角法とし、表 3.3.2-1 に示す条件で計測した。図 3.3.2-1 に計測方法の概要を図 3.3.2-2 に測定状況を示す。表 3.3.2-2 に超音波の入射条件を示す。作製した全ての試験体に対して従来 型の超音波法による測定を行った。

光合油丸合	波の種類	縦波	横波	
达信波设定	印加電圧	250V		
	素子サイズ等	32chPA、0.4×20mm、0.5mm ピッチ、 3MHz		
送受信プローブ	クサビ高さ	38.35mm	27.2mm	
	クサビ角度	16.5 度	25 度	
	屈折角	0-88度	38-88度	
走查範囲	機械走查範囲	き裂部を含む 70mm 利	塣度(1mm ピッチ)	
	焦点距離	70mm/集束なし		
	試験体音速 (ステンレス側)	5720 m/s	3320 m/s	
受信設定	試験体音速 (平板:炭素鋼側)	5910 m/s	3250 m/s	
	測定感度	0dB、-18dB、+18dB		

表 3.3.2-1 フェーズドアレイ法における計測条件

(a)アレイ探触子の走査方法(溶接模擬試験体に対する計測の例)

(b)溶接模擬試験体に対するアレイ探触子の設置位置 (1,4,7,8 は母材)

(c)き裂付与模擬試験体に対するアレイ探触子の設置位置 図 3.3.2-1 計測方法およびデータ取得方法の概要

(a) 平板試験体(b) 瓦状試験体図 3.3.2-2 従来超音波法(フェーズドアレイ法)の計測状況

試験体	材質	板厚(mm)	波の種類	送信面方向	探触子位置 (mm)	備考	
溶接模擬試 験体 1,2,3	SUS316L/ Y316L	35	縦波	片面片側	119	母材	
			横波	片面片側	119	母材	
			縦波	両面両側	±59		
			横波	両面両側	±59		
			縦波	片面片側	119	母材	
浴接模擬試	NCF600/	25	横波	片面片側	119	母材	
缺1本 600−1, 600−2	Alloy82	35	縦波	両面両側	±59		
000-2			横波	両面両側	±59		
			縦波	片面両側	±119	母材	
與材継 + 模 將封驗体	NCF600/	35	横波	片面両側	±119	母材	
擬武駛平 D1 D2	Alloy82/		縦波	両面両側	±59		
D1, D2	55+00		横波	両面両側	±59		
1900	SUS304	35	縦波	片面片側	61		
1809			横波	片面片側	61	き裂付与模擬	
	SUS304	35	縦波	片面片側	65	試験体	
1810			横波	片面片側	65		
2221	2221 SUS304/ Y308	25	縦波	片面両側	$\pm 64, +57$		
2221		25	横波	片面両側	\pm 70, +62	溶接付きき殺	
2230 SUS30 Y308	SUS304/	25	縦波	片面両側	$\pm 64, +57$	体	
	Y308	23	横波	片面両側	$\pm70,+62$	r T	
2685	SUS304	25	縦波	片面両側	±64		
2085		JUDJUT	200001	23	横波	片面両側	± 70
2686	SUS304	25	縦波	片面両側	±64		
2080		23	横波	片面両側	±70	き裂付与模擬	
2600	SUS204	25	縦波	片面両側	±64	試験体	
2000	505504	25	横波	片面両側	±70		
2692 SU	SUS204	25	縦波	片面両側	±64		
	505504		横波	片面両側	± 70		
CS15	SM490A/	25	縦波	片面両側	±64		
CS30	Alloy82/SUS316L	23	横波	片面両側	± 70		
	SUS316L/	20	縦波	片面両側	±64		
PSS1, 2, 3, 4	Y316	50	横波	片面両側	± 70		

表 3.3.2-2 従来超音波法による各試験体の超音波入射条件

②新超音波法

送信パルサ

新超音波法は、送信探触子と受信探触子を対向して配置し、測定対象部(き裂又は溶接部)を それらの間に挟むように設置してデータ取得を行う。図 3.3.2-3 にデータ取得方法の概要を図 3.3.2-4 に計測状況の写真を、表 3.3.2-3 に計測条件を示す。新超音波法では、必要に応じて表 3.3.2-4 に示す様に送信超音波の強度を変えるため送信電圧を変え、サブハーモニック波の発生 状況の違い等も評価した。作製した全ての試験体の種類に対して新超音波法による測定を行った。

測定装置·測定状況

送信・受信プローブ

図 3.3.2-4 新超音波法の計測状況

	X 01 01 1 0			
	波の種類	縦波		
送信波設定	周波数	5 MHz		
	印加電圧	40V~1000 V		
	波数	3 波		
送信プローブ	素子サイズ	10×10mm		
	クサビ	縦波屈折角 45°になるように設定		
戸信プローブ	素子サイズ等	128chPA (32ch 使用)、0.7 mm ピッチ、4MHz 又は 32chPA、0.4×10 mm、0.5 mm ピッチ、5 MHz		
又旧/口 /	クサビ	なし		
走査範囲	屈折角 (受信)	0-65 度 程度		
	焦点距離	40 mm(深さ方向)又は開口合成		

表 3.3.2-3 新超音波法による計測条件

試験体	材質	板厚(mm)	波の種類	設定音速	探触子間距離	送信電圧
				(m/s)	(mm)	(v)
浴接模擬試	SUS316L/	35	縦波	5,761	60	1045
験体 3	Y316L					
溶接模擬試	NCF600/	35	縦波	5 761	60	1045
験体 600-1,	Alloy82	55		5,701		1015
異材継手模	NCF600/					
擬試験体	Alloy82/	35	縦波	5,761	60	1045
D1	SS400					
1809	SUS304	35	縦波	5,714	41	400 1000
1810	SUS304	35	縦波	5,714	41	400, 1000
0001	SUS304/	25	~~~~~	5 7 (1		
2221	Y308	25	純波	5,761	22	
	SUS304/					1045
2230	Y308	25	紙波	5,761	55	
2685	SUS304	25	縦波	5,750	40	
2686	SUS304	25	縦波	5,750	40	40,100,200,
2688	SUS304	25	縦波	5,750	40	400,800
2692	SUS304	25	縦波	5,750	40	
CS15	SM490A/					40,100,200,
CS30	Alloy82/SUS316L	25	縦波	5,750	40	400,800
		• •				400, 700,
PSS1, 2	SUS316L/	30	紙波	5,567	55	1000
DCC2 4	Y316	20	%谷河大	5 750	52.0	40,100,200,
r 353, 4		50	和比议	3,/30	52.9	400,800

表 3.3.2-4 新超音波法による各試験体の計測条件

(2) 測定結果

①溶接金属からのノイズレベルの測定

新超音波法の適用性を評価する方法の一つとして、溶接金属部で発生するノイズの振幅を比較 した。オーステナイト系溶接金属の超音波探傷では、溶接金属の柱状晶の境界や溶融境界等で超 音波が反射し、欠陥が無くてもエコーを生じることがある。この様なエコーは、本来検出すべき 信号(欠陥からのエコー)の検知を妨害するノイズとなる。超音波探傷の信頼性を高める上で、 ノイズレベルが低いことは必要条件の一つと考えられるため、ここでは溶接金属からのノイズレ ベルを比較評価した。

図 3.3.2-5 はノイズレベルの評価方法の概念であり、まず、溶接金属で反射あるいは溶接金属 を通過した超音波の信号の振幅を測定する。次に図 3.3.2-6 に示す様に探触子の位置を変えて、 ノイズがほとんど無いと考えられる母材からの信号の振幅測定し、両者の振幅を比較してノイズ レベルの大小を評価した。

表 3.3.2-5 に溶接金属のノイズの振幅の RMS (root mean square: 二乗平均平方根)をノイズレ ベルとして母材のノイズレベルで正規化した値を示す。従来型の超音波法では、オーステナイト 系溶接部の探傷に一般に用いられる縦波のノイズレベルは横波比べて低く、一般に用いられてい る探傷条件は妥当であるといえる。新超音波法において、サブハーモニック波を計測する条件で あるフィルターありでは、従来型の超音波法の縦波と同程度あるいは条件によっては低い値であ った。この結果より、新超音波法は、従来型の超音波法と比べて溶接金属組織に起因するノイズ に対する耐性が高いと考えられる。

図 3.3.2-5 溶接部のノイズレベルの測定方法と測定例

図 3.3.2-6 測定位置の例

		従来超音波法		新超音波法		
		縦波	横波	フィルターあり	フィルターなし	
溶接模擬試験体 3		2.2	6.3	3.4	6.8	
溶接模擬試験体 600-1		1.6	3.0	1.4	2.4	
異材継手模	SUS 側	2.2	2.4	2.4	7.5	
擬試験体 D1	炭素鋼側	6.1	6.4	2.8	7.7	

表3.3.2-5 母材のノイズレベルで正規化した溶接金属のノイズレベル比較

②き裂寸法測定

従来型の超音波法ならびに新超音波法でき裂部を測定した結果と、各々の手法でき裂高さを評価した結果を以下に示す。3.3.1 に記した切断によるき裂高さの実測結果との比較は次項の評価に記す。図3.3.2-7 は測定結果の例として試験体番号 1810 に対する測定結果である。従来型の超音波法は横波斜角の結果を新超音波法はフィルターなし(ω成分)とフィルターあり(1/2ω成分)の結果である。このき裂ではサブハーモニック波は確認されなかった。図3.3.2-8 および図3.3.2-9 は試験体番号 PSS-1 に対して、各々縦波による従来型の超音波法および新超音波法の測定結果である。従来型の超音波法では、き裂先端からの端部エコーを明瞭に識別することは難しく、エコーの広がり等の情報を考慮してき裂高さを計測した。新超音波法では送信電圧 700V では 1/2ω成分を確認できなかったが、1000V でき裂先端付近と考えられる位置から 1/2ω成分の信号を確認できた。

表 3.3.2-6 および表 3.3.2-7 に各々従来型の超音波法および新超音波法によるき裂寸法測定結 果を示す。従来型の超音波法では、探触子をき裂長さに沿って移動させ、きず信号の振幅が最大 値に対して 1/2 になる範囲(-6dB と呼ぶ)ならびに 1/4 になる範囲(-12dB と呼ぶ)を指示長さ として表中に記載した。表中の×印は端部エコーの識別が困難等の理由により高さの評価が不可 であったことを示す。また、長さ測定結果の-は、ノイズレベルが-6dB 又は-12dB を上回り測定 不可であったことを示す。

図 3.3.2-7 試験体番号 1810 に対する測定結果

図 3.3.2-8 試験体番号 PSS-1 に対する従来型の超音波法による測定結果

(b)送信電圧 700V におけるウェーブレット解析結果

(c)送信電圧 1000V におけるウェーブレット解析結果 図 3.3.2-9 試験体番号 PSS-1 に対する新超音波法による測定結果

討驗休	材啠	板厚	波の種類	探触子位置	直さ mm	長さ mm
FN 10大 14	们員	mm	10071里,积	mm		-6dB/-12dB
1800	SUS204	35	縦波	+61	8.5	18/23
1809	303304	35	横波	+61	7.8	27/30
1810	SUS204	35	縦波	+65	9.9	10/16
1810	303304	55	横波	+65	9.9	19/20
				-64	×	19/27
			縦波	+64	5.2	13/17
2221	2221 SUS304/ Y308	25		+57	4.1	13/18
2221		23		-70	×	17/27
			横波	+70	×	18/25
				+62	5.9	16/20
				-64	×	17/21
2230 SUS304/ Y308			縦波	+64	4.3	19/24
	SUS304/	25		+57	4.3	19/25
	Y308	23	横波	-70	×	16/20
				+70	4.2	18/24
				+62	3.8	16/21
			縦波	-64	10.7	22/27
2685 SUS304	25	MEDX	+64	9.0	21/26	
		堆社	-70	11.0	26/30	
			傾仮	+70	10.1	16/29
			<u>₩₩₩</u>	-64	8.5	13/22
2686	SUS204	25	MEDZ	+64	6.0	18/29
2080	303304	23	楼述	-70	6.2	13/17
			傾仮	+70	4.0	12/24
			<u> </u>	-64	9.8	14/28
2699	GUG204	25	和此初又	+64	8.2	22/27
2688	505304	25	推计	-70	11.4	16/24
			傾仮	+70	9.0	16/24
			<u> </u>	-64	4.7	17/24
2(02	010204	25	桃波	+64	4.4	9/18
2692	505304	25	+tt: \r++	-70	7.1	12/22
			傾波	+70	3.9	10/23

表 3.3.2-6 従来超音波法によるき裂寸法測定結果

計時仕	十十万斤	板厚	沖の種類	探触子位置	ホ ケ	長さ mm
 訊 駛 1 半		mm	波の種類	mm	向さ mm	-6dB/-12dB
			₩¥3中	-64	×	12/23
SM490A/	SM490A/	25	和此边	+64	×	16/24
C\$15	SUS316L			-70	×	21/-
	505510L		傾波	+70	×	17/22
			\$\\ \$\\	-64	×	12/28
6820	SM490A/ Alloy82/ SUS316L	25	和此次	+64	×	15/22
C\$30		25	*#*	-70	×	18/28
	505510L		傾波	+70	×	19/39
			縦波 -	-64	×	35/48
DCC1	SUS316L/	30		+64	7.9	13/53
PSS1 Y316	Y316		1444 Vete	-70	10.2	32/-
		供収	+70	6.7	24/-	
		L/ 30	縦波	-64	10.4	41/54
PSS2 SUS316L Y316	SUS316L/			+64	10.4	40/53
	Y316		横波	-70	8.3	44/-
				+70	13.8	46/-
				-64	3.7	37/-
DCC2	SUS316L/	20	和此初又	+64	10.3	30/47
P553	Y316	50		-70	6.9	33/-
			傾波	+70	6.8	38/-
			<u> </u>	-64	12.4	49/-
DCC4	SUS316L/	20	紙波	+64	8.6	47/-
PS54	Y316	30	+# it	-70	8.5	52/-
			横波	+70	15.1	-/-

高さ測定の×は高さ測定不可

長さの一はノイズが-6dBまたは-12dBを越えており測定不可であることを示す。

試験体	材質	板厚 mm	設定電圧 V	ω成分 高さ mm	1/2ω成分 高さ mm	備考
			1000	6.5	9.7	H25 測定
			100	(8.7)	_	
1809	SUS304	35	200	(8.8)	_	
			400	(8.7)	_	H27 測定
			800	(8.7)	—	
1810	SUS304	35	1000	8.5	_	
2221	SUS304/Y308	25	1045	×	_	
2230	SUS304/Y308	25	1045	×	_	
2685	SUS204	25	400	11.4	_	
2083	2085 505304	23	800	11.4	_	
2686	SUS204	25	400	6.7	_	
2080	2686 SUS304	25	800	6.2	_	
2600	SUS204	25	400	11.7	_	
2088	303304	23	800	11.7	_	
2602	SUS204	25	400	5.4	_	
2092	303304	23	800	5.4	_	
	SUS2161 /V216	20	700	4.9	7.1	
P551	SUSSIOL/1510	30	1000	4.3	6.9	
DCCO		20	700	6.7	_	
P352	SUSSIOL/1310	50	1000	5.6	_	
PSS3	SUS316L/Y316	30	40~800	×	—	
PSS4	SUS316L/Y316	30	40~800	×	_	

表 3.3.2-7 従来超音波法によるき裂寸法測定結果

*高さ測定の×は高さ測定不可、-は1/2ω成分なし

(3) 測定精度の評価

従来型の超音波法と新超音波法で測定したき裂高さの測定値と、3.3.1 に記述した切断調査に よるき裂高さの実測結果を比較して誤差を整理したものを表 3.3.2-8 に示す。高さ測定値は測定 結果の最大値を評価したが、従来型の超音波法で溶接部の結果 (PSS1 および CS15) は縦波の結果 を評価した。高さ測定誤差は、従来型の超音波法、新超音波法のω成分ならびに 1/2ω成分ともに 最大でも 2.5 mm 程度であり、新超音波法の測定精度は従来型超音波法と同程度と考えられる。ま た、高さ測定誤差の目安の一つに、国内外の超音波探傷試験技量の判定基準である 3.2 mm という 指標があるが、今回の測定結果はこの 3.2 mm の範囲内の誤差であり、既往の知見と同程度の誤差 であった。

	早十キ刻青ヶ	従来超音波	法 mm	新超音波法 mm		
試験体	取入さ表向さ 実測値 mm	高さ測定値*	誤差	高さ測定値*	誤差	周波数 成分
1800	7.2	0.5	1.2	6.5	-0.7	ω
1809	1.2	0.5	1.5	9.7	2.5	1/2 ω
1010	0.4	0.0	0.5	8.5	-0.9	ω
1810	9.4	9.9	0.5	_	—	1/2 ω
2695	0.4	11.0	1.6	11.4	2.0	ω
2083	9.4	11.0 1.0	1.0	_	—	1/2 ω
DCC1	5.4	7.0	2.5	4.9	-0.5	ω
P551	5.4	7.9	2.5	7.1	1.7	1/2 ω
CS15	5 1	\checkmark		×	—	ω
C\$15	5.1	×		_	—	1/2 ω

表 3.3.2-8 実測したき裂高さと比較した誤差の評価結果

*高さ測定値は測定値の最大値、溶接部(PSS1およびCS15)は縦波の測定値を評価

3.3.3 新X線計測技術の適用性の検証

(1) 残留応力計測に関する適用性の検証

①新X線計測技術と従来型X線計測技術の比較検証

1) 試験体及び応力計測方法

2 次元検出器を用いた新 X 線計測技術 (cos α 法) のこれまでの手法と従来型 X 線計測技術である 2 θ -sin² φ 法[参考文献(1)、(2)]を用いて、溶接模擬試験体の応力計測を行い、その差異を比較検証した。「3.3.1 模擬試験体の作製」で作製し溶接模擬試験体の内、表 3.3.3-1 に示す溶接模擬試験体を残留応力評価に用いた。

溶接模擬試験体の応力計測は、図 3.3.3-1 に示すように溶接線方向中心において溶接線垂直方 向のラインにおいて、溶接線平行方向及び直交方向の測定を行い、溶接熱影響部の溶接残留応力 を求めた。

表 3.3.3-2 及び表 3.3.3-3 に各計測法における溶接模擬試験体の各材料の測定条件を示す。新 X線計測技術の応力測定条件は、金沢大学でこれまで計測に用いられた推奨条件とした。2θ-sin² φ法の応力測定条件は、日本材料学会「X線応力測定法標準(2002 年版)-鉄鋼編-」を参考に して決定した。

記号	継手の 種類	母材	溶接金属	応力除去 焼鈍	電解研 磨	備考
SUS316L-1	同材	SUS316L	Y316L	あり	あり	平板
SUS316L-2	同材	SUS316L	Y316L	あり	なし	平板
Alloy600	同材	A11oy600	82 合金	あり	あり	平板
DMW	異材	SUS316L/SS400	82 合金	あり	あり	平板
PCC-SR	同材	STPT410	共金	あり	なし	配管、PWHT あ り
PCC-AW	同材	STPT410	共金	あり	なし	配管
PCS-AW	異材	STPT410/SUS316L	82 合金	あり	なし	配管
FCS-P	異材	SM400A/SUS316L	82 合金	あり	なし	平板 ピーニング処理

表 3.3.3-1 残留応力計測を行った溶接模擬試験体

図 3.3.3-1 溶接模擬試験体の残留応力計測位置の例(平板)

	SUS304, 316L	NCF600 (Alloy600)	炭素鋼		
X 線応力測定装置	PULSTEC 製 X 線応力測定装置 (μ-X360)				
X 線検出器	2 次元	Ē(イメージングプレ-	- F)		
応力測定法		cosα法			
特性X線	Cr-Kβ	Cr-Kβ	Cr-Kα		
管電圧、管電流		20kV、1mA			
回折面	γFe311	Ni311	αFe211		
測定領域	約 <i>ϕ</i> 2mm				
X 線入射角(Ψ ₀)(応力)	30° (SUS316L	同材)、35° (Alloy60	00同材、異材)		
X 線照射時間(応力)	30s(同材) 120s(異材)	120s	20s		
ピークサーチ法		半価幅中点法			
ヤング率	193GPa	214GPa	289. 3GPa		
ポアソン比	0. 30	0. 31	0. 28		
回折角 2 <i>θ</i>	148. 5°	151. 8°	156. 8°		

表 3.3.3-2 新 X 線計測法の測定条件

表 3.3.3-3	従来型 X 線計測法の測定条件

	SUS316L	Alloy600	炭素鋼		
X 線応力測定装置	RIGAKU	⊌X線応力測定装置(PSF-3M)		
X 線検出器		0 次元			
応力測定法	2 <i>θ−</i> sin ² ψ法	、(並傾法、Ψー定法、	揺動なし)		
特性X線	Cr-Kβ	Cr-Kβ	Cr-K <i>a</i>		
管電圧、管電流		30kV、10mA			
回折面	γFe311	Ni311	αFe211		
スリット角	1°	1°	1°		
測定領域		$4x4mm^2$			
応力測定	0、20.7、30、37.8、45°(5 点)または、				
ψ角度	0、18.4、26.6	0、18.4、26.6、3.3.3、39.2、45、50.8° (7 点)			

走査 2 <i>θ</i> 範囲	144. 00-152. 88°	148.00-156.88°	151.20-161.56°
ステップ幅	0. 12°	0. 12°	0. 14°
計数時間	2. 5s	2. Os	0. 5s
ピークサーチ法		半価幅中点法	
応力定数	-366 MPa∕°	-277.84 MPa/°	-318 MPa/°

2) 応力測定結果の比較検証

図3.3.3-2及び図3.3.3-3に電解研磨ありと電解研磨なしのSUS316L同材溶接模擬試験体の残 留応力を比較した結果をそれぞれ示す。電解研磨ありの場合両者に差があるが、電解研磨なしの 場合、残留応力分布はよく一致していた。電解研磨ありの場合、測定している結晶粒は母材の結 晶粒であり、新X線法では照射面積が従来法に比べて狭いので、照射面積に対する結晶粒が少な く測定に誤差が出たと考えられる。図3.3.3-4及び図3.3.3-5にAlloy600同材及びSUS316L-SS400異材溶接模擬試験体の残留応力を比較した結果をそれぞれ示す。両者共に残留応力分布の 傾向は一致しているが、新X線法の応力分布は、従来法に比べて変動が大きかった。この結果も 結晶粒が照射面積に対して大きかったことが要因と考えられる。オーステナイト系材料の場合、 母材の結晶粒が粗大なため、照射面積が狭い場合、応力測定精度が劣る。表面に機械加工層があ る場合、溶接残留応力を計測するためには表面の加工層を電解研磨により除去する必要があり、 電計研磨面の測定については、これまでのX線計測技術では測定精度が劣ると考えられる。

図 3.3.3-6 及び図 3.3.3-7 に PWHT (Post Weld Heat Treatment: 溶接後熱処理) ありとなしの STPT410 溶接模擬試験体の残留応力を比較した結果をそれぞれ示す。PWHT ありの場合、従来法と 新 X 線法両者は、応力は除去されほぼ 0 MPa であるが、溶接部から離れた領域で差が見られた。 PWHT なしの場合、溶融境界近傍の溶接熱影響部の測定結果は、両者ほぼ一致したが、離れた領域 では差があった。図 3.3.3-8 (a)~(d)に溶接模擬試験体の溶接線直交方向応力測定時のデバイ環 の一例を示す。炭素鋼 (STPT410) の溶接熱影響部の溶接金属中央からの距離 x=-14 mm では、正 常なデバイ環であるが、母材部の x=-52 mm では、スポッティになっており、SUS316L では、同様 の傾向があるが全体的にデバイ環の形状はスポッティになる傾向があった。図 3.3.3-9 に STPT410-SUS316L 異材継手溶接模擬試験体の残留応力を比較した結果を示す。両者共に残留応力 分布の傾向は一致しているが、新 X 線法の応力分布は、従来法に比べて変動があった。電解研磨 なしでも、オーステナイト系材料の場合、結晶粒径が粗大な場合があり、照射面積の違いがバラ ツキの要因と考えられる。

図 3.3.3-4 Alloy600 同材の平板溶接模擬試験体(電解研磨あり)の比較

(a) STPT410; x=-14 mm
(b) STPT410; x=-52 mm
(c) SUS316L; x=-14 mm
(d) SUS316L; x=-52 mm
(d) SUS316L; x=-52 mm
(d) SUS316L; x=-52 mm
(d) SUS316L; x=-52 mm

図 3.3.3-9 STPT410-SUS316L 異材の配管溶接模擬試験体の比較

②新X線計測技術の開発手法による応力計測の適用性の検証

1) ピーニング処理した異材継手模擬溶接試験体による新X線計測技術(開発手法)と従来型の X線計測技術の比較検証

開発手法である Mn 管球を用いた 2 次元検出器を用いた新 X 線計測法及び従来型の X 線応力計 測法である 2 θ -sin² φ 法を用いて、異材継手模擬試験体の応力計測を行った。「3.3.1 模擬試験体 の作製」で作製した図 3.3.3-10 に示すバタリング付異材継手模擬溶接試験体 2 体の内ベベル角 30°の試験体の表面をピーニング処理した後、応力計測を行った。

異材継手模擬試験体の応力データの取得は、溶接線垂直方向のラインにおいて、溶接線平行方 向及び直交方向の応力計測を行った。2次元検出器を用いた新 X 線計測法の応力計測条件は、金 沢大学で開発した手法で Mn 管球を用いたポイント計測(計測面積:約3 mm²)で行った。図 3.3.3-11 にポイントで計測した Alloy82 のデバイ環の一例を示す。デバイ環の形状により十分にポイン トでの計測が可能と考えられるため、揺動を行わず計測を実施した。従来型の計測法である 2θsin² φ 法の応力計測条件は、日本材料学会「X 線応力計測法標準(2002 年版)-鉄鋼編-」を参考 にして決定した。計測面積は約 16 mm²である。

図 3.3.3-12 に計測結果を示す。開発手法での SUS316L 母材部及び Ni 基合金溶接金属部の計測 結果は、従来法に比べてバラツキが小さく計測の信頼度も小さかった。従って、開発手法である Mn 管球を用いたポイント計測で、ピーニング後の応力評価がオーステナイト系材料の母材部だけ

3.3-35

でなく溶接金属部についても可能と考えられる。ピーニング後の表面の結晶粒はピーニングより 結晶方位が乱れ回折に寄与する結晶方位が増えたためポイント測定でも十分計測できたと考えら れる。

図 3.3.3-10 応力計測したバタリング付異材継手模擬溶接試験体

図 3.3.3-11 Alloy82 計測時のデバイ環の一例

図 3.3.3-12 応力計測結果

2) 円筒異材継手模擬試験体による新X線計測技術(開発手法)と従来型のX線計測技術の比較検 証

開発手法である 2 次元検出器を用いた新 X 線計測法及び従来型の X 線応力計測法である 2 θ - sin² φ 法を用いて、昨年度作製した円筒異材継手模擬試験体の応力計測を応力弛緩前後に行った。 本試験体は 3.3.1.3 において応力弛緩法により応力計測した試験体である。

異材継手配管模擬試験体の応力データの取得は、図 3.3.3-13 に示すように溶接線垂直方向のラ インにおいて、溶接線平行方向及び直交方向の応力計測を行った。2 次元検出器を用いた新 X 線 計測法の応力計測条件は、金沢大学で開発した手法で Mn 管球を用いたライン揺動で行った。ライ ン揺動は、計測点から応力勾配の影響の少ない溶接線方向に±20 mm (計測面積:約80 mm²)の揺 動を行った。また、応力弛緩後の開発手法での計測は±7.5 mm のライン揺動で計測を行った。従 来型の計測法である 2 θ -sin² ϕ 法の応力計測条件は、日本材料学会「X 線応力計測法標準(2002 年版) -鉄鋼編-」を参考にして決定した。計測面積は約16 mm²である。

図 3.3.3-14 に応力弛緩前の開発手法と 3.3.3(1) で計測した新 X 線計測技術の Cr 管球を用いた ポイント計測の計測結果を示す。Cr 管球のポイント計測に比べて、Mn 管球のライン揺動計測では、 各計測点での計測精度向上及び応力分布のバラツキが低減された。

図 3.3.3-15 に応力弛緩後の残留応力計測結果を示す。応力弛緩後の残留応力はバラツキはある もののほぼ±100 MPa 以内であり、応力が解放されていることを確認した。

図 3.3.3-16 に応力弛緩前の開発手法による計測結果と従来法及び応力弛緩法による計測結果 を示す。各計測法による計測面積の違い等による誤差はあるものの応力分布の傾向は同等であり 開発手法により残留応力評価が可能と考えられる。

図 3.3.3-13 異材継手配管模擬溶接試験体の応力計測位置及び揺動条件

図 3.3.3-16 残留応力計測結果(応力弛緩法及び従来法との比較)

③まとめ

これまでの新 X 線計測技術と従来型 X 線計測技術を用いてオーステナイト系材料の溶接残留応 力を測定し比較検証した結果、オーステナイト系材料の結晶粒径は粗大であり、測定面積の小さ いこれまでのポイント測定での新 X 線計測技術では、X 線回折に寄与する結晶数が少ないためデ バイ環がスポッティになり応力測定精度が不十分であったと考えられる。

ピーニング処理した異材継手模擬試験体及び円筒異材継手模擬試験体を用いて金沢大学の開発 手法による残留応力計測の実機への適用性を検討した結果、ピーニング処理後の残留応力計測は、 溶接金属部を含めてオーステナイト系材料に対して残留応力評価が可能と考えられる。また、オ ーステナイト系材料の配管の溶接残留応力評価にも揺動法を用いる開発手法を適用できると考え られる。

(2) 塑性ひずみ計測に関する適用性の検証

①新X線計測技術と従来型X線計測技術の比較検証

1) 試験体及び応力計測方法

2 次元検出器を用いた新 X 線計測技術のこれまでの手法と従来型 X 線計測技術を用いて、塑性 ひずみ付与試験体の塑性ひずみ計測[参考文献(3)、(4)]を行い、その差異を比較検証した。「3.3.1 模擬試験体の作製」で作製した塑性ひずみ付与模擬試験体の X 線プロファイルのデータを取得し た。塑性ひずみ付与模擬試験体のうち SUS304、SUS316L、NCF600 及び SS400 において応力除去焼 鈍(熱処理) したものと熱処理しないものに塑性ひずみを 0、0.3、0.5、1、3、5、10%与えた試験 体のデータ取得を行った。また、各試験片の片面側の中心部の測定領域に対して電解研磨を行った後のデータも取得した。

計測条件は、表 3.3.3-2 及び表 3.3.3-3 に示した応力計測条件と同等である。但し、新 X 線計 測技術では、X 線の入射角 ϕ を 0° とした。計測した X 線プロファイルから半価幅を求め、付与し た塑性ひずみ量と半価幅の相関性を調査し、比較検証した。図 3.3.3-17 に塑性ひずみ付与試験体 の測定位置を示す。新 X 線計測技術の測定は、ポイント測定で行い照射面積は約 ϕ 2 mm である。 従来型の計測では、照射面積は約 4×4 mm である。

図 3.3.3-17 塑性ひずみ付与模擬試験体のデータ取得位置 (寸法は塑性ひずみ付与前の寸法)

2) 塑性ひずみ計測結果の比較検証

図 3.3.3-18 に各材料における塑性ひずみと X 線プロファイルの半価幅の関係を示す。半価幅 は、新 X 線計測技術では中心角方向 500 点の平均値、従来型計測技術では¢角5 点の平均値であ る。新 X 線計測技術で測定した半価幅の方が、従来法で測定した半価幅より値は大きいが、どの 条件においても塑性ひずみに対する相関性は、同様の傾向を示し、熱処理ありの場合、塑性ひず み量の増加に伴い、半価幅も増加しており、相関性が認められた。一方、熱処理なしの場合は、 塑性ひずみ量に対して半価幅の変化は小さく、相関性は認められなかった。熱処理なしの場合の 半価幅は、熱処理ありの塑性ひずみ 10%の半価幅より大きく、熱処理なしの場合は、機械加工時の ひずみが残存していると考えられる。表面に機械加工時の塑性ひずみがある場合は、後から付加 された塑性ひずみを評価するために、電解研磨等により表面の機械加工層を除去する必要がある と考えられる。

図 3.3.3-19 及び図 3.3.3-20 に電解研磨後の塑性ひずみ付与試験体の半価幅を比較した結果を 示す。熱処理ありと熱処理なしで、新 X 線法で測定した半価幅の方が、従来法で測定した半価幅 より値は大きいが、SUS304 と SUS316L では、塑性ひずみ 1%以上で相関性は同様であるが、1%未満 では測定値のバラツキ等の差があった。NCF600 の熱処理なしでは、塑性ひずみと半価幅の相関性 が単純な増加傾向でないのは、電解研磨による機械加工層の除去が不十分だったためと考えられ る。

電解研磨により機械加工層を除去することによって付与された塑性ひずみを評価できることが 示唆された。

図 3.3.3-18 塑性ひずみ付与試験体の半価幅の比較

図 3.3.3-19 電解研磨後のステンレス鋼の塑性ひずみ付与試験体の半価幅の比較

図 3.3.3-20 電解研磨後の Ni 基合金塑性ひずみ付与試験体の半価幅の比較

②新X線計測技術と従来型計測技術の分析評価

従来法と新 X 線法を用いて塑性ひずみ付与試験体の塑性ひずみを計測するために、塑性ひずみ と相関性のある X 線プロファイルの半価幅を測定してきた。従来法と新 X 線法では、塑性ひずみ との相関性(増加傾向)は同等であったが、半価幅の絶対値が異なっていたので、その要因を分 析した。

X線プロファイルは、応力測定においてピーク位置を求めるために、平滑化処理される。半価幅 値も平滑化後のプロファイルから求めてきた。

表3.3.3-4に両測定法の平滑化条件(平滑化条件1)、図3.3.3-21 (a)に平滑化処理前後のX線 プロファイルの一例を示す。新X線法では、平滑化方法の数、回数が多いため平滑化後のプロフ ァイルは、従来法に比べて平滑化前と大きく異なり平らになるため、半価幅値が大きかったと考 えられる。そこで、従来法と新X線法で同等の平滑化処理を行い、半価幅を求めた。表3.3.3-5 に 両測定法で同等の平滑化の条件(平滑化条件2)を示す。図3.3.3-21 (b)に表3.3.3-5 の条件で 平滑化したプロファイルを示す。平滑化前後にプロファイルに大きな差はなかった。図3.3.3-22 に平滑化条件2を用いて半価幅を求めた結果と平滑化条件1の結果を比較した図を示す。(a)熱処 理あり-電解研磨なしの試験体の結果では、平滑化条件2を用いることにより相関性はほとんど変 わらず、半価幅の値の差は小さくなった。半価幅は同等とはならなかったが、これは測定装置・ 方法・条件の違いによる差と考えられる。電解研磨ありの場合、新X線法では半価幅の値は小さ くなったが、塑性ひずみ1%以下で相関性が変化した。図3.3.3-23 に熱処理あり-電解研磨ありの 塑性ひずみ0,10%の試験体のデバイ環を示す。平滑化条件2は平滑化条件1に比べて平滑化の効 果が弱いので、各方向のプロファイルの半価幅を評価していると考えられる。また、塑性ひずみ 1%以下で相関性が変わるのはスポッティさの影響と考えられる。ピーク強度が低いプロファイル では、正しく半価幅を求めるのは困難なため、ピーク強度が最高値の40%以上のプロファイルの半 価幅の平均値で塑性ひずみの評価を行った。図3.3.3-24に再解析の結果を示す。電解研磨なしで は、プロファイルは全周にわたって測定されているため、変化はなかったが、電解研磨ありでは、 塑性ひずみ1%以下で相関性が改善された。平滑化条件1では、電解研磨ありとなしで相関性に明 確な差はなかったが、再解析した結果では、明確な相関性の差が見られた。これは、結晶粒径の 違いと考えられる。

測定法	フィルタ	画素角度 (周方向)	画素半径(2θ方向)	回数
新X線法	メディアン	23	11	1
	ガウシアン	17	11	3
	移動平均	13	11	5
従来法	加重平均	-	5	1

表 3.3.3-4 応力測定時の X線プロファイルの平滑化条件(平滑化条件1)

表 3.3.3-5 新 X 線法と従来法で同等の X 線プロファイルの平滑化条件(平滑化条件2)

測定法	フィルタ	画素角度 (周方向)	画素半径(2θ方向)	回数
新X線法	移動平均	1	5	1
従来法	移動平均	-	5	1

(a) 平滑化条件 1 (b) 平滑化条件 2 図 3.3.3-21 SUS316L (熱処理あり、電解研磨なし、塑性ひずみ 0%)の X 線プロファイル

(b)熱処理あり-電解研磨あり

(c)熱処理なし-電解研磨あり図 3.3.3-22 SUS316Lの平滑化条件による半価幅の比較

(a) 平滑化条件1
(b) 平滑化条件2
(c) 平滑化条件1
(d) 平滑化条件2
塑性ひずみ0%
塑性ひずみ0%
塑性ひずみ10%
塑性ひずみ10%
塑性ひずみ10%
ジロボン10%
ジロボン10%

(ピーク強度の最大値の40%以上のピーク強度のプロファイルのみ)

③新X線計測技術(開発手法)の塑性ひずみ計測に関する適用性検証

Cr 管球を用いた新 X 線計測技術と従来法を用いて X 線プロファイルの半価幅による塑性ひずみ 評価方法を検討してきた。新 X 線計測技術と従来法では半価幅の絶対値は異なるが付与した塑性 ひずみに対して同様の相関性が見られた。しかしながら、付与した塑性ひずみを評価するために、 表面の機械加工によるひずみを電解研磨により除去した電解研磨面で計測した結果では、母材の 粗大結晶粒の影響により 1%以下の塑性ひずみ量ではデバイ環がスポッティになり計測のバラツキ が大きかった。

本年度は、開発手法を用いて Mn 管球によるポイント計測及びマッピング計測により計測精度の 向上を検証した。図 3.3.3-17 に計測した SUS316L 塑性ひずみ付与試験体の形状及び計測位置を示 す。また、図 3.3.3-25 にマッピング計測の計測点を示す。1 点当たりの計測領域は ϕ 2 mm であり 8×8 mm の領域において 16 点計測した。

図 3.3.3-26 に電解研磨面において Mn 管球を用いたポイント計測結果と昨年度までに計測した Cr 管球を用いたポイント計測結果を示す。半価幅は、X線プロファイルの表 3.3.3-4 及び表 3.3.3-5 の 2 通りの新 X線計測技術の平滑化条件を用いて求めた値である。昨年度 Cr 管球の計測におい て報告したように Mn 管球の計測においても半価幅は平滑化条件により絶対値が異なる。Mn 管球 での計測の方が低塑性ひずみ領域での変化率が大きく、計測への適用性が高いと考えられるが、 ポイント計測では低塑性ひずみ領域でのバラツキが大きかった。図 3.3.3-27 に示すようにポイン ト計測でのデバイ環は、低塑性ひずみほどスポッティになり半価幅のバラツキが大きい。図 3.3.3-28 にポイント計測による中心角方向の半価幅とマッピング計測による 16 点の平均値による中心 角方向の半価幅を示す。ポイント計測での半価幅の中心角方向のバラツキに比べてマッピング計 測での平均半価幅の中心角方向のバラツキは小さくなっている。

図 3.3.3-29 にマッピング計測における半価幅の 16 点の平均値と塑性ひずみの関係を示す。マ ッピング計測による 16 点の平均により低ひずみ領域の半価幅のバラツキが低減されており、昨年 度の金沢大学での NCF600 の測定結果と同等の傾向を示した。熱処理あり-電解研磨なし、熱処理 なし-電解研磨あり、熱処理あり-電解研磨ありの各試験片で半価幅の平均値の塑性ひずみに対す る相関性は、絶対値は異なるが同等であった。絶対値が異なるのは、昨年度までの考察により各 測定面において結晶粒径が異なっていると考えられる。実機の結晶粒径が不明の場合、半価幅の 計測のみで塑性ひずみを評価することは困難である。図 3.3.3-27 に示したようにデバイ環の形状 は塑性ひずみ量によって異なり、また、結晶粒径が大きくなるほどデバイ環はスポッティになる ため、デバイ環の形状をパラメータとして塑性ひずみを評価できないかを昨年度金沢大で NCF600 を用いて検討した。同様の方法で SUS316L についても評価した。図 3.3.3-30 に半価幅の分散、 ε (α)の分散と塑性ひずみ量の関係を示す。各試験片において半価幅の分散及び ε (α)の分散

は塑性ひずみ量には NCF600 と同様の傾向を示し相関性が見られた。これらの複数のパラメータの 組み合わせにより塑性ひずみを評価できると考えられる。

図 3.3.3-25 マッピング計測の計測点(16 点)

図 3.3.3-26 ポイント計測による Cr 管球と Mn 管球の計測結果の比較

(a) 塑性ひずみ 0% (b) 塑性ひずみ 1% (c) 塑性ひずみ 10% (3.3.3-27 塑性ひずみ量とデバイ環形状の関係 (熱処理あり-電解研磨ありの例)

図 3.3.3-29 半価幅の 16 点の平均値 (エラーバーは最大値と最小値)

図 3.3.3-30 塑性ひずみと X 線計測から得られたパラメータの関係

④まとめ

新 X 線計測技術を用いて塑性ひずみを計測する手法を検討した結果、X 線回折プロファイルの 半価幅と付与した塑性ひずみに相関性が認められた。また、表面に機械加工層がある場合、加工 時のひずみにより付与した塑性ひずみと半価幅に相関性は認められなかったが、電解研磨により 機械加工層を除去することにより、相関性が認められ機械加工等による初期のひずみが存在する 場合も計測できることが示唆された。しかしながら、電解研磨を行った場合、粗大結晶粒の影響 により特に低塑性ひずみ領域においてデバイ環がスポッティとなり半価幅にバラツキがあった。 開発手法であるマッピング計測により測定点数を増やすことによりバラツキを低減できることが 示唆された。

また、半価幅は同材料でも結晶粒径の違いにより塑性ひずみと半価幅の相関性は同等であるが 半価幅の絶対値が異なっていた。結晶粒径や塑性ひずみ量によりデバイ環の形状が異なるため、 これらを評価できるパラメータ(半価幅の分散やε(α)の分散)を検討した結果、塑性ひずみ との相関性が認められた。従って、複数のパラメータを組み合わせて塑性ひずみを評価できるこ とが示唆された。

実際の計測では、半価幅の値は、X線プロファイルのデータ処理条件や計測条件等の種々の条件 によって変わるため、これらの条件を考慮した複数のパラメータを組み合わせたマスターカーブ 等を作成する必要がある。また、地震時に付加された塑性ひずみを評価するような場合は、塑性 変形してない部位と相対的に評価することによって付加された塑性ひずみが評価できると考えら れる。

3.3.4 新超音波法と新X線計測技術の適用性の検証のまとめ

新超音波法および新 X 線計測技術の原子力発電機器への適用性を検証するため、現行の軽水炉 や革新的原子力システムで使用あるいは想定される材料等を検討整理し、代表的な材料で複数種 類の模擬試験体を作製した。そして、新超音波法の適用性を評価するため、模擬試験体に寸法を 変えたき裂を付与又は寸法の異なるき裂試験体を作製し、同じ試験体を新超音波法と従来型の超 音波法で測定して、溶接部のノイズレベルやき裂寸法を比較した。その結果、現場で想定される 損傷を模擬して作製したき裂に対して、新超音波法によりサブハーモニック波が発生することと、 新超音波法の溶接部におけるノイズレベルやき裂高さ測定精度は従来型の超音波法と同程度であ り、実際の計測法として適用可能性が高いことが確認された。ただし、一部のき裂ではサブハー モニック波が発生しない場合があり、今後発生メカニズムの解明も含めて実用化に向けた更なる 技術開発が必要と考えられる。また、新X線計測技術における残留応力測定においても従来法と 同程度の測定結果となることを確認した。従来型のX線計測技術は現場測定が困難であったが、 新 X 線計測技術により従来法と同程度の性能で現場での測定が可能となる見通しが得られた。さ らに、新 X 線計測技術における塑性ひずみ評価では、測定表面の加工層を電解研磨等により除去 し、半価幅等のパラメータを評価することで数%程度の塑性ひずみ評価の可能性が確認された。た だし、塑性ひずみと半価幅の関係は、材料等によって変わるため現場での使用においては、相対 的な評価(例えば、解析等により塑性変形を受けていない箇所と、塑性ひずみが懸念される箇所 との相対比較)を行うものと考えられる。

参考文献

- (1)「X 線応力測定法」,日本材料学会編, pp. 54-88 (1990).
- (2)「X線応力測定法」,日本材料学会編, pp. 185-210 (1990).
- (3)「超音波探傷試験Ⅲ」,日本非破壊検査協会,pp.112-147(1989)
- (4)「超音波探傷試験Ⅲ」,日本非破壊検査協会,pp.148-170(1989)

3.4 研究開発委員会 (H24~H27)

研究代表者の下で、原子力発電機器の構造、運用、計測の分野における学術経験者として、広い見識を持つ4名の委員で研究推進委員会を組織頂き、各研究項目間における連携を密にして研究 を進めるとともに、広く意見を聴きながら研究を進めるため委員会を定期的に開催した。各年度 の前半で、前年度の報告と、次年度の計画を説明し、意見やコメントを頂くことで、プロジェクトの計画に反映し研究を実施した。

平成27年度の最終成果報告についてのプロジェクト全体を通じた総評・コメントでは、特に原 子力発電機器の現場において切望される新超音波、新X線法を模擬試験体で計測して、有効性を検 証した点を高く評価頂いた。さらに今後、発電機器実機への適用を想定した実証試験や、現場技 術者を入れたプロジェクトの推進を提言された。

4. 結言

4.1 総まとめ

(1) 大振幅超音波計測用積層探触子と超音波パルサーの開発については、実機計測用の大変位超音波送信技術として、リモート型SiCパルサーと4チャンネル積層探触子等を組み合わせた大変位超音波送信部と、分解能の高いフェーズドアレイを利用しサブハーモニック探傷画像表示部を組み合わせた新しいSPACEにより、実機対応型SPACEを新超音波法として完成した。20 mm伝搬後の超音波変位(Peak to Peak)で最大200 nmを達成し、既存のSPACEでの最大変位30 nmに比べ、桁違いの性能を達成した。

(2) サブハーモニック波によるき裂計測の有効性検証については、新しく開発した計測シス テムを用いて、閉口疲労き裂を負荷により徐々に開口しながら、疲労き裂のき裂開口幅と非線形 超音波発生についての基礎データを取得した。き裂でのサブハーモニック波発生のメカニズムに ついても、き裂凹凸を想定したき裂モデルを提案し、FEM解析により基盤となるモデルを得た。 さらに作製した原子力発電機器模擬き裂材を新超音波法で計測し、既存の超音波フェーズドアレ イ法と比較して、新超音波法の優位性を実証した。

(3)小型X線回折装置の開発については、従来技術による市販機と比較して、測定時間の短縮を 約10倍向上させ、1回の応力測定時間1分~2分以内を実現した(従来技術では10分~20分以上必 要)。また、装置の小型軽量化に関しては、同様に、重量を約1/15軽量とし、総重量10 kgを達成 し、可搬性が著しく向上した。さらに、装置占有面積を約1/20とした。また、応力測定精度は繰 り返し再現性を従来技術の±30 MPaから±6 MPa (~±1.2 MPa)以下にでき、少なく見積もって も約5倍高精度化を実現した。このような各仕様の高性能化が実現した理由は、金沢大の佐々木 が1990年代から基礎研究を積み重ねてきた二次元X線検出器方式による従来には無かった新しいX 線計測技術と、それによって利用可能になる多数の回折環画像データ(1度の測定で500倍増加可 能)に対して有効な新応力解析理論(cosα法)の両方を適用したことによる。このような新方 式によるX線応力測定法は、海外ではまだ実現しておらず、測定理論等の基礎研究及び測定装置 の開発のいずれにおいても日本(金沢大学)が世界をリードしている状況である。

(4) X線による残留応力計測の有効性検証に関しては、新しく開発したX線計測システムを用いて、大型溶接継手試験体(平板上および配管状)に対して適用し、従来技術と比較しながら行った。さらに、塑性ひずみの計測の有効性に関しては、引張負荷による塑性ひずみを 種々のひずみ値に対して付与した複数の試験片に対して適用して検証実験を行って検討した。これらの検討により、従来技術に基づいた現状の市販機と比較して、新X線技術の優位性を実証することができた。

4.2 今後の展望

本研究では、開発した新超音波法、新X線法のいずれも、実機模擬試験体で、既存の計測法に 対し優位性を示すことを確認できた。今後は開発した、新超音波法、新X線法のそれぞれについ て、実機に広範に実用される計測手法として認知され実用されるためには、さらに実機適用性の 検証を進める必要があると考えている。

新超音波法については、平成27年度に作製した模擬き裂試験体のうち、異材溶接試験体で、既存の計測と新超音波法とも、き裂端部の検出が困難だった。次のステップとして、既存の手法では計測が不可能なこれらの欠陥でも端部エコーが識別できることを目標にした実証研究を行うことが考えられる。これらの欠陥が計測可能になれば、新超音波は新しい次元の計測法として確固とした地位を確保できるものと考えている。

また今後、付随的に実施すべき事項としては、き裂におけるサブハーモニック波発生のメカニ ズムの確立が上げられる。新超音波法でサブハーモニック波を用いた探傷の有効性が認知されて も、そのサブハーモニック波の発生原因が定量的には解明されていない現状では、広範な実用は 難しいと考えられる。この検証の中核手法として、本プロジェクトで着眼した、き裂凹凸を考慮 した FEM 解析モデルを想定しており、個別の実機き裂で、サブハーモニック波が発生するか否か の判別が可能になる程度の利用を想定した検証が必要と考えている。これら、次のステップの実 施や追加の実施事項の運用においては、現場で原子力発電機器の運用にあたる技術者の参加が不 可欠と考えており、これらの広範な技術者が結集して新超音波法の普及に向かいたいと考えてい る。

新 X 線法については、本プロジェクトの進捗に影響されて、現在、産業界(部品メーカー等の ユーザー、検査会社、プラント保守関係企業、X 線装置メーカー)や、大学・公的研究機関の研究 者らの注目が集まりつつあり、新 X 線技術方式による X 線応力測定法に関する測定標準化制定の 動きが開始されている(日本非破壊検査協会・保守検査部門・現場指向 X 線残留応力測定研究委 員会、委員長:金沢大学・佐々木敏彦、参加委員数:37名、平成26年4月開始)。本研究委員会 による活動により、ラウンドロビン試験が実施され,各分野の現場適用に向けた広範囲の検証が 行われつつある。

本プロジェクトで開発が進められた新 X 線技術の性能は、現段階においても産業界に十分貢献 できるレベルとなっており、従来技術では適用が困難であった現場適用や実機適用を中心に利用 や普及が確実に進みつつあり、今後もさらに進むものと思われる。一方、今後の検討課題として は、①原子力施設での適用を考慮した場合に検討が必要になると考えられる放射線環境下での測 定を実現するための対策,②さらなる小型軽量化及び測定の高速化(リアルタイム測定)、などが 挙げられる。

まず、①の放射線環境下対策に関しては、X線検出器の再検討が必須であり、本プロジェクトで 採用したイメージングプレート(IP)では対応が困難である。そなわち、外部の放射線(とくにガ ンマ線)と測定試料から発生する特性X線との弁別がIPでは不可能であるため、エネルギー弁別 が可能な新たな検出器が必要になる。金沢大学では、現在、日本で新開発中の新型半導体X線検 出器をその候補として注目し、基礎研究を開始している。この新型半導体X線検出器は、CCDセン サーに比べて処理が早く、また、検出器を構成するピクセルサイズがIPより小さく(IPの1/6~ 1/3)、また、リアルタイム検出にも適している。このため、前述の②の小型化や高速化に期待で きる検出器であり、今後の開発が期待される。

なお、X線応力測定法の測定精度は装置の性能のみによるものではなく、測定試料の測定部の結 晶状態、すなわち、結晶粒径、転位密度、結晶方位分布などが大きく影響する。これらの情報を 踏まえた X線応力測定を実現することで、より安定した応力測定が実現できる。新 X線技術で計 測される回折環の情報からその実現に必要な結晶状態の情報が得られる可能性が考えられ、その ための有効利用方法の確立が今後の課題である。