160202

柔軟性の高いMA回収-核変換技術の開発 (2016~2019年度)

研究代表者 飯塚 政利(電力中央研究所)再委託先責任者 野平 俊之(京都大学)再委託先責任者 小藤 博英(原子力機構)

2021年3月16日

研究の背景

- ・放射性廃棄物に含まれるMAを回収し、高速炉燃料サイクルに閉じ込めて核変換 することによる、放射性廃棄物の環境負荷低減技術を国内外で検討
- 高速炉開発の基本的方向性は堅持される一方、その役割、用いられる技術、開発
 スケジュール、国外状況は不確定
- ・軽水炉使用済燃料、再処理Puの取扱い検討も急務
- ・高速炉サイクルによる環境負荷低減のために、魅力が大きく実現性の高い技術によるMA核変換/Pu利用システムを、柔軟かつ段階的に開発する戦略が必要
- ・ 高速原型炉「もんじゅ」廃止措置の意向決定(2016)
- ・第5次エネルギー基本計画(2018)「高速炉R&Dは米国や仏国等と国際協力」
- ・高速炉開発戦略ロードマップ(2018):「21世紀半ば頃現実的なスケールの高速炉運転開始期待」
- ・原子カイノベーションの創出促進のための政策(NEXIP)の一環として、METI補助事業開始(2019)
- ・日米CNWGにおいて、金属燃料高速炉の安全性解析と乾式再処理技術に関する研究協力を開始(2018)
- ・ DOEが建設する多目的研究炉(VTR)のベースに金属燃料モジュール型高速炉PRISM技術選定(2018)
- ・ 仏政府が高速実証炉ASTRID計画の大幅変更方針を表明(2018)
- ・日本原燃(株)六ヶ所再処理工場が新規制基準に対する適合性審査に合格(2020)
- ・四国電力伊方原子力発電所3 号機から我が国初の使用済MOX燃料取り出し(2020)

本研究で提案する柔軟な高速炉サイクル/MA分離変換技術導入

研究の構成

技術的課題、達成目標

(1)金属燃料および炉心開発

(1-1) 高濃度MA含有金属燃料の設計と特性評価

実施項目

(1-2) MA含有金属燃料装荷方法の 最適化検討 高濃度MA含有金属燃料の成立 条件(製造時、運転時)の明確化

MA含有金属燃料装荷炉心の 安全性とMA核変換性能の両立 MA添加金属燃料を 一部/全部に装荷し た高速炉炉心の運用 方法見通しを得る

(2)乾式再処理技術開発

(2-1) 液体Ga電極を用いたアクチニド /希土類分離回収技術開発

(2-2) 廃棄物の減容化技術開発

(2-3) 乾式再処理機器概念の構築と プロセス設計 燃料製造に適した組成のMA回収

燃料サイクルで発生する高レベル 廃棄物体積の最小化

再処理プロセス実証に向けた設計 データ取得 種々の出発物質からの乾式法によるMA 回収技術を実証する

(3)MA回収・核変換シナリオと Pu/MA収支の検討

MA回収・核変換シナリオとPu/MA収 支の検討

MA回収・核変換システム全体の 整合と放射毒性低減効果の提示 多重リサイクルによる MA核変換特性を明 らかにする

IR 電力中央研究所

様々な高速炉導入シナリオやPu需給シナリオに 柔軟に対応できるMA回収-核変換システムの構築

成果:高濃度MA含有金属燃料の設計と特性評価

燃料製造時条件の明確化

従来の研究実績、報告例を調査・検討

- ・アクチニド金属の混合性
- U-Am、Np-Amの固相での溶解度は低い
- Puの共存によりU、Np、Amの混合性が高まる

・高濃度MA含有U-Pu-Zr合金の製造実績

- U-20Pu-11Zr- 7Np- 4Am
- U-23Pu-13Zr-15Np-10Am (wt%)

MA添加率の上限 ≤ Pu富化度

・希土類(RE)の混入

50um U-Pu-Zr-2MA-2RE U-Pu-Zr-5MA-5RE (RE:希土類)

希土類の混入率 ≦ 数%

高濃度MA含有金属燃料の照射健全性評価

従来の研究実績、報告例を調査・検討

- ・MA含有金属燃料と被覆管材の高温溶融相
- 炉外拡散対試験の結果、三元合金(U-Pu-Zr)とMA-RE含有合金 とで、スチール製被覆管材との反応開始温度に有意な差はなし

被覆管最高温度制限はU-Pu-Zr燃料と同等(~650℃)

金属燃料照射挙動解析コードALFUSを用いた解析

- ・高濃度MA含有金属燃料を 扱うための調整
- 米国で観察された照射挙動 (FPガス放出率)を反映 (右図)

·照射挙動解析(下表)

炉心構成*	Pu/MA含有率	被覆管最大CDF	被覆管最大変形率
(a)	18.5/16.0	3.7E-6	1.3%
(c)	18.8/18.8	3.8E-3	2.5%

*次貝の炉心設計参照

被覆管材:ODS鋼

IR 電力中央研究所

高濃度MA含有金属燃料ピンの健全性が確保できる見通し

成果:MA含有金属燃料装荷方法の最適化検討(1/2)

安全性とMA核変換性能の両立

炉心(a):高速炉導入初期

- ・MOX高速炉心に高濃度MA含有 金属燃料を部分装荷
- ・ベース炉心(MOX燃料炉心)の
 設計変更不要
- ・MA均質装荷MOX燃料炉心の約 1.6倍のMA核変換量達成

提案したシナリオのいずれの 時点でも安全性とMA核変 換性能を両立した炉心設計 が可能な見通し

内側炉心燃料(MOX or 金属)
 外側炉心燃料(MOX or 金属)
 ● 高濃度MA含有金属燃料

炉心(b):金属燃料高速炉導入後-1

- ・金属高速炉心の一部に高濃度MA含有
 金属燃料を装荷
- ・出力ピーキングが過大
- ・炉心安全パラメータが悪化

- 主炉停止系制御棒
- 後備炉停止系制御棒
- ステンレス反射体

● Zr-H遮へい体
 ○ SiC/SiC複合材減速集合体

炉心(c):金属燃料高速炉導入後-2

- ・高濃度MA含有金属燃料を均質装荷
- ・減速集合体により炉心安全パラメータを維持
- ・MA均質装荷MOX燃料炉心の約8倍のMA 核変換量達成

IR 電力中央研究所

	炉心(a)	炉心(b)	炉心(c)
Pu富化度 (wt%) *1	18.7/24.8/18.5	13.7/13.7/22.7	18.8/18.8/-
MA添加率(wt%) *2	16.0	22.7	18.8
増殖比 (-)	1.00	0.98	0.78
取出燃焼度 (GWd/t)	116	96	133
MA変換量 (kg/Gwe-y)	89	94	461

*1 内側炉心/外側炉心/非均質装荷・高濃度MA含有金属燃料 *2 高濃度MA含有金属燃料のMA添加率

成果:MA含有金属燃料装荷方法の最適化検討 (2/2)

高速炉サイクルへのニーズ変化に対する柔軟性

時期	ニーズ	燃料組成	
近い将来	MA核変換	高濃度MA	
平衡期	サイクル維持 または増殖	低濃度MA、 高フィッサイル	

R電力中央研究所

成果:液体Ga電極を用いた分離回収技術開発(1/2)

従来の乾式法(高速炉金属燃料の処理)

CRIEPI

 \bigcirc

固体陰極 液体Cd陰極: 全アクチニドー括回収が可能だが、 希土類に対する分離性能がやや低く、 製品に<u>希土類が混入</u>

_	Ceを基準とする分離係数 ^(a)		
	液体Ga電極 ^(b)	液体Cd電極 ^(c)	
U	450	45	
Pu	220	21	
Am	140	15	
	C	C	

(a) 分離係数 = $\frac{C_{M \ \bar{\kappa} k \pm ag}}{C_{M \ \bar{\kappa} b \pm a}} \times \frac{C_{Ce \ \bar{\kappa} b \pm a}}{C_{Ce \ \bar{\kappa} k \pm ag}}$

燃料合金の不均一性

高MA含有金属燃料の製造、 希土類/TRU比の高い原料 (HLLWなど)の処理には、 より高い分離性能が必要

IR 電力中央研究所

- ・過去の小規模試験で液体Cd陰極の10倍程度の アクチニド/希土類分離性能が期待できることを確認
- ・実用規模・条件で液体Ga電極の性能を発揮させる ためには、知見が不足

本研究での実施事項

- ・多量(液体Ga中溶解度以上)にアクチニドを 回収したときの挙動確認
- ・ 全MA(新たにNp、Cm)のデータ整備
- ・液体Ga電極工学設計のためのデータ取得
- ・ 酸化物還元からの連続プロセス成立性確認

成果:液体Ga電極を用いた分離回収技術開発 (2/2)

液体Ga中溶解度以上にアクチニドを回 収したときの挙動確認

電解試験後のGa電極断面SEM/EDX分析結果

- ・Puは電極表面に滞留せず、スムーズにGa電極内部に移行
- ・回収量を増やしても運転を阻害する挙動は見られず
- ・液体Ga中溶解度以上にPuを回収しても、アクチニド/希土類 間の分離性能には影響なし

酸化物還元からの連続プロセス成立性確認

- ・模擬使用済プルサーマル燃料を作成
- ・650℃溶融LiCl中での電解還元によりU, Puを金属に転換
- ・想定通りの希土類分離性能で液体Ga電極にU、Puを回収

液体Ga電極工学設計のためのデータ取得

- ・工学規模装置(溶融塩:約7kg、電極Ga:
 - 約2kg)を製作、使用
- ・適用性のある材料(W, Al₂O₃, MgO)を選定
- ・Ceの回収において、溶融塩よりも液体Gaの撹拌 により高い処理速度が得られることを確認

<u>全MA(新たにNp、Cm)のデータ整備</u>

 ・分離係数の大小順は U>Np>Pu>Am>Cm であることを確認(液体Cd と同様)
 ・U回収速度増加 →分離係数低下の傾向
 ・低い溶融塩中U濃度/電 流密度での回収が必要

成果:廃棄物の減容化技術開発(1/3)

従来の使用済塩化物廃棄物処理方法

© CRIEPI

成果:廃棄物の減容化技術開発(2/3)

固体Si電極への希土類元素回収

溶融塩中の希土類(La, Ce, Pr, Nd, Eu, Sm, Gd)をシリサイドの形態で回収可能

回収した希土類の酸化物転換、ガラス化

・溶融塩中で固体Si上に電解回収した希土類を大気中で酸化処理した後、ガラス原料 (Na₂B₄O₇, SiO₂, CaO, Li₂O) と混合して加熱することによりガラスに転換できること を確認

成果:廃棄物の減容化技術開発(3/3)

固体Si電極への希土類元素回収と同時にヨウ素を分離・回収

<u> 成果: MA回収·核変換シナリオと Pu/MA収支の検討 (1/4)</u>

研究成果6:MA回収・核変換シナリオとPu/MA収支-2/4

炉心(a) ・MOX高速炉心に高濃度MA含有 金属燃料を部分装荷 ・MA均質装荷MOX燃料炉心の約 1.6倍のMA核変換量達成

- ✓ 高速炉へのPu供給
 - → 軽水炉MOXは減少、高速炉への移行に要する 期間は60年
 - → 10年毎に18.7t-HM/yの軽水炉MOX乾式 再処理施設を導入(最大93.7t-HM/y)
- ✓ 最大サイクル外蓄積量と解消までの所要期間
 - ・Puf:11.9t、60年
 - ・MA:34.2t、80年

研究成果6:MA回収・核変換シナリオとPu/MA収支-3/4

炉心(c) ・高濃度MA含有金属燃料を均質装荷 ・MA均質装荷MOX燃料炉心の約8倍 のMA核変換量達成

✓ 高速炉へのPu供給

- → UOx燃料再処理で発生するPu(MOX)と
 高レベル廃液中のMAを高速炉燃料に利用
 → 高速炉への移行途中でPufが不足するため、
 66.0t-HM/yのL-MOX乾式再処理施設を 導入、最終的には120t-HM/y規模が必要
- ✓ 最大サイクル外蓄積量と解消までの所要期間
 - ・ Puf: 12.4t、60年(炉心(a)より僅かに増加)

IR 電力中央研究所

・MA:17.5t、20年(大幅に縮小かつ短縮)

研究成果6:MA回収・核変換シナリオとPu/MA収支-4/4

金属燃料を装荷した高速炉を用いたMA核変換による放射毒性(1GWe-yあたり) の低減効果を、アクチニドの経口年摂取限度(50mSv)に対する比で評価

炉心(a)			
元素	装荷時	照射後※	差
Np	4.24E+06	1.99E+06	-2.25E+06
Am	9.31E+10	6.32E+10	-2.99E+10
Cm	2.28E+10	2.42E+10	1.48E+09
MA合計	1.16E+11	8.75E+10	-2.84E+10

	炉心(c)			
	元素	装荷時	照射後※	差
-	Np	7.00E+05	1.40E+07	1.33E+07
	Am	5.48E+11	3.25E+11	-2.23E+11
	Cm	1.45E+11	1.39E+11	-6.05E+09
_	MA合計	6.93E+11	4.64E+11	-2.29E+11

IR 電力中央研究所

単位:経口年摂取限度(50mSv)に対する比 ※炉停止の後、30年冷却後の値

✓ 照射によって新たに生成して毒性が増加する核種も存在するが、MA全体 としての毒性は低減

✓ 今後は廃棄物処分までを含めた燃料サイクル全体における放射毒性低減 効果の評価が必要

研究成果のまとめ

<u>高濃度MA含有金属燃料を採り入れた高速炉炉心</u>

- ・金属燃料合金組成条件(MA 添加率/希土類混入率上限)を評価
- ・高濃度MA含有金属燃料を、MOX燃料炉心への部分装荷、金属燃料炉心への部分装荷、SiC減速材集合体を分 散配置した金属燃料炉心に均質装荷、したいずれの場合も、安全性確保と高いMA核変換量が両立可能と確認
 ・上記の炉心において高濃度MA含有金属燃料の照射健全性確保の見通し

<u>高いFP/MA比の物質(使用済軽水炉MOX、HLLW)からのMA回収</u>

- ・乾式再処理 溶融塩電解精製工程で液体Ga電極を使用することにより、模擬使用済軽水炉MOX 燃料を出発物質として、高い希土類FP除染係数でアクチニドが回収できることを実証
- ・Pu、Am(既知)に加えてNp、Cmについて、液体Ga電極における希土類FP除染性能を把握
- ・液体Ga電極に飽和溶解度以上にPuを回収しても希土類FP除染性能が影響を受けないことを確認

燃料サイクルで発生する廃棄物発生量の低減

- ・電解精製使用済塩化物溶媒から固体Si電極への希土類FP回収、回収物のガラス化による廃棄 物発生量低減の可能性を確認
- ・長半減期核種を含むヨウ素について、使用済塩化物溶媒の電解により塩素・臭素から分離されて ガスとして発生すること、Cuメッシュを用いて発生ヨウ素をCuIの形態で回収可能なことを確認

MA回収・核変換シナリオ評価

・上記の技術を採り入れたサイクルの諸量評価を行う ことにより、検討したいずれの高速炉導入シナリオに ついても、MA最大蓄積量・期間および放射毒性の 低減効果を確認 「様々な高速炉導入シナリオやPu 需給シナリオに柔軟に対応できる MA回収・核変換システムの構築」 という目的を達成

成果の新規性、研究効果

成果の新規性:幅広い観点からの廃棄物有害度低減効果最大化

- ✓ 酸化物燃料/金属燃料の特徴、利点を柔軟に取り入れた高速炉導入進展シナリオを提示
- ✓ 燃料、炉心に加えてPuやMAの調達、使用済燃料再処理を含めた総合的検討の結果、検討したいずれのシナリオについても、マルチサイクルの成立性、MA最大蓄積量・期間および放射 毒性の低減効果を確認
- ✓ 酸化物燃料炉心への高濃度MA含有金属燃料の部分装荷、SiC/SiC複合材減速集合体の配置などの斬新な炉心構成アイディアにおける安全性とMA核変換性能両立を確認
- ✓ 乾式再処理への液体Ga電極導入がもたらす、高い希土類FP/アクチニド分離性能を明示
- ✓ 固体Si電極への希土類FP回収という独創的アイディアにより、乾式再処理の技術的課題の 一つである廃棄物発生量低減の見込
- ✓ 代表的な長寿命FPの一つであるヨウ素を溶融塩電解という新規な方法で分離し、CuIの形態で回収することに成功

研究効果:革新的原子カシステム技術開発への寄与

- ✓ 多様な技術的・社会的要請を満たす革新的原子カシステムの有望なオプションとして高速炉 サイクル関連研究を牽引
- ✓ 金属燃料高速炉の実用化に向けた燃料・炉心設計基盤技術と知見蓄積
- ✓ 高いTRU/希土類除染性能が付加された乾式再処理技術を活用することによる、多様な高線量/高発熱燃料を用いた燃料サイクルおよびMA分離核変換システム(加速器駆動核変換システムなど)の成立性確立にも寄与
- ✓ 長寿命FPの分離・核変換による放射性廃棄物有害度低減のための技術開発の促進

技術的課題

- ✓ PuとMA組成比の明確化、Amの揮発を抑制する燃料製造法の検討
- ✓ 解析・評価をフォローする照射試験によるデータ拡充(MA/FPと被覆管との共存性、燃料 合金からのFPガス放出率変化など)
- ✓ 乾式再処理技術(液体Ga電極による高除染アクチニド回収、廃棄物発生量を低減させる 塩廃棄物処理・廃棄物固化)のスケールアップ試験による工学設計データ取得、実用機器 概念の構築、処理速度向上

など

金属燃料サイクル技術の実証段階へのレベルアップ

国内外の研究開発 機関の連携・協力 NEXIPなどの事業 への成果活用

IR 電力中央研究所

我が国の核燃料サイクルに必要とされる要件

- ✓ 計画的なPu 利用
- ✓ 長期的なエネルギー安定供給
- ✓ 放射性廃棄物の有害度低減
- ✓ 多様な炉型および核燃料物質形態への適応
- ✓ 幅広いPu 需給シナリオへの対応

を満たす高速炉サイクル導入

補足資料:実施体制

(3) MA回収-核変換シナリオとPu/MA収支の検討 [電中研]

補足資料:実施スケジュール

分担機関

:電中研

IR 電力中央研究所

C CRIEPI